1,285 research outputs found

    Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations

    Full text link
    We introduce a new method, the Local Monge Parametrizations (LMP) method, to approximate tensor fields on general surfaces given by a collection of local parametrizations, e.g.~as in finite element or NURBS surface representations. Our goal is to use this method to solve numerically tensor-valued partial differential equations (PDE) on surfaces. Previous methods use scalar potentials to numerically describe vector fields on surfaces, at the expense of requiring higher-order derivatives of the approximated fields and limited to simply connected surfaces, or represent tangential tensor fields as tensor fields in 3D subjected to constraints, thus increasing the essential number of degrees of freedom. In contrast, the LMP method uses an optimal number of degrees of freedom to represent a tensor, is general with regards to the topology of the surface, and does not increase the order of the PDEs governing the tensor fields. The main idea is to construct maps between the element parametrizations and a local Monge parametrization around each node. We test the LMP method by approximating in a least-squares sense different vector and tensor fields on simply connected and genus-1 surfaces. Furthermore, we apply the LMP method to two physical models on surfaces, involving a tension-driven flow (vector-valued PDE) and nematic ordering (tensor-valued PDE). The LMP method thus solves the long-standing problem of the interpolation of tensors on general surfaces with an optimal number of degrees of freedom.Comment: 16 pages, 6 figure

    Analysis and Modeling of Effective Passage Retrieval Mechanisms in Question Answering Systems

    Get PDF

    A Fuzzy Time Series-Based Model Using Particle Swarm Optimization and Weighted Rules

    Full text link
    During the last decades, a myriad of fuzzy time series models have been proposed in scientific literature. Among the most accurate models found in fuzzy time series, the high-order ones are the most accurate. The research described in this paper tackles three potential limitations associated with the application of high-order fuzzy time series models. To begin with, the adequacy of forecast rules lacks consistency. Secondly, as the model's order increases, data utilization diminishes. Thirdly, the uniformity of forecast rules proves to be highly contingent on the chosen interval partitions. To address these likely drawbacks, we introduce a novel model based on fuzzy time series that amalgamates the principles of particle swarm optimization (PSO) and weighted summation. Our results show that our approach models accurately the time series in comparison with previous methods

    A Hybrid 3D Path Planning Method for UAVs

    Get PDF
    • …
    corecore