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ABSTRACT 
 
In this paper we describe the Dynamic Simultaneous Multithreading (DSMT) 
architecture, together with a simple resource allocation policy that may be employed to 
improve its performance. DSMT exploits TLP and ILP available in single applications 
on a SMT architecture core. In DSMT, threads are speculatively created and executed, 
while special hardware mechanisms keep track of misspeculations and dependence 
violations through registers and memory.  
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1 Introduction 

In multithreaded architectures, TLP can be exploited using implicit or explicit mechanisms. 
Implicit multithreaded architectures aim is to improve the execution time of a single 
program, whereas explicit multithreading goal is to improve the execution time of a 
multiprogrammed workload. Implicit multithreading comprises either static methods such 
as parallelizing compilers or binary annotators to identify threads or dynamic techniques 
that extract threads speculatively at run time from a single program. Explicitly 
multithreaded architectures such as Simultaneous Multithreading (SMT) exploit efficiently 
the resources in the processor by executing multiple independent threads simultaneously, 
at the cost of a small increment in complexity. However, despite its advantages, being 
SMT an explicit architecture, it does nothing to improve the performance of a single 
program. Moreover, SMT may cause cache pollution because different threads are 
competing for the shared cache and, as is described in [Caz04], the fetching policy 
employed greatly impacts the performance of the processor. 

This paper briefly describes an implicitly multithreaded architecture called Dynamic 
Simultaneous Multithreading (DSMT) based on a SMT microarchitecture. We also describe a 
resource allocation policy that can be used to improve DSMT’s performance. This paper is 
organized as follows. Section 2 briefly describes previous related work. Section 3 provides 
a detailed description of the DSMT microarchitecture. The resource allocation policy 
proposed is briefly presented in Section 4. Finally Section 5 presents some conclusions. 
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2 Related Work 

In Dynamic Multithreaded (DMT) processor [Akk98], threads are generated from loops 
and procedure continuations, i.e., instructions from either after the call or backward branch. 
Thus, it precludes the exploitation of the potentially high-degree of parallelism that exists 
across inner loop iterations. Moreover, threads are allowed to be spawned out of program 
order, which results in lower branch and return address prediction accuracies. These 
factors lead to long threads that increase the chance of data dependence misspeculation. In 
contrast, the Clustered Speculative Multithreaded (CSM) processor [Mar99] generates threads 
from target of backward branches, in particular innermost iterations of a loop. In CSM, 
inter-thread data dependencies through registers are resolved by performing data value 
prediction. When a thread finishes, its output predictions are verified and mispredictions 
are handled by selective re-execution. Inter-thread memory dependence speculation is 
performed by means of a multi-value cache. This special cache memory stores, for each 
address, as many different data words as the number of thread units. Among the SMT-
based implicitly multithreaded processors proposed, DSMT employs less complex 
mechanisms comparatively with other similar architectures [Akk98, Mar99] specifically: a) 
a simple mechanism based on utility bits to detect and resolve inter-thread dependencies 
through registers and memory, b) no trace buffers or specialized cache structures, c) state 
bits and simple flushing mechanisms perform control of speculation, and d) a simple loop 
stride value prediction mechanism. 

Diverse resource allocation policies for SMT processors have been proposed. The 
goal of these mechanisms is to improve SMT’s performance, avoiding resource contention 
by giving each thread fair access to resources. The dynamic resource allocation policies 
presented in [Caz04] (DCRA) classify threads according to their demands on resources as 
fast-slow, active-inactive. Special counters keep track of resource utilization. 

3 DSMT Microarchitecture 

DSMT operates either in non-DSMT, pre-DSMT or DSMT mode [Ort03]. In the non-DSMT 
mode, there is only a single thread of execution and thus the processor behaves as a 

Figure 2: TCIU and Multiple Contexts. 
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Figure 1: DSMT Microarchitecture. 
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superscalar processor. When a loop is detected, the processor transitions to the pre-DSMT 
mode to detect not only live registers, intra- and inter-thread dependent registers, but also 
those registers that are most likely used as induction variables in the loop. Later, if it is 
determined that multithreaded execution will improve performance, the microarchitecture 
transitions to the DSMT mode of execution where the overlapped execution of multiple 
threads occurs. Figure 1 shows the organization of the DSMT microarchitecture. It consists 
of a SMT architecture organized into nine pipelined stages: Fetch, Decode/Dispatch, Inter-
Thread Register Resolution, Issue, Execute, Memory, Write-back, Commit and Thread 
Spawning. The Fetch stage fetches a block of instructions from a thread, but can also fetch 
instructions from different threads based on the scheduling policy offered by the Scheduler. 
The fetched instructions are then decoded, renamed, and dispatched to the Reservations 
Stations (RSs) associated with each functional unit. At the Inter-Thread Register Resolution 
stage, inter-thread dependencies through registers are resolved. Finally, during the Thread 
Spawning stage speculative contexts are spawned and the control of thread-level 
speculation is performed. To support simultaneous execution of multiple threads, each 
thread has its own set of Instruction Queue (IQ), Reorder Buffer (ROB), and Context registers. 
Each Context represents the state of a thread and the multiple Contexts are interfaced to the 
Thread Creation and Initiation Unit (TCIU), which controls how threads are spawned and 
executed. The Register and Memory Data Flow (MDF and RDF) mechanisms associated with 
the Contexts and Load Store Queues (LSQ) keep track of inter-thread dependencies through 
registers and memory respectively. The Loop Detection Unit is responsible for detecting 
loops and supplying target addresses so that the Thread Creation and Instatiation Unit 
(TCIU) which ultimately spawns multiple threads. Whenever a taken backward-branch 
instruction is detected, its branch and target addresses are recorded in the Loop Detection 
Unit. Later, a second branch instruction with the same branch target address causes the 
processor to enter its pre-DSMT mode of execution. A loop is classified as good or bad 
based on a “break even” policy, where the IPC measured for a loop during pre-DSMT 
mode is compared against the observed Sustained IPC (SIPC) during previous run(s) of the 
same loop in DSMT-mode. DSMT aims to guarantee that the DSMT mode of execution 
will result in better performance comparatively with the non-DSMT mode of execution 
regardless of misspeculations. The control of nested loop execution is handled by a special 
stack structure associated with the Loop Detection Unit. 

Figure 2 shows the multiple contexts in the processor physically interconnected in a 
ring fashion. In DMST mode the thread spawning process starts by copying the target 
address of a loop in the Continuation register to the PCs of each spawned context. To “jump 
start” each thread, values detected during pre-DSMT mode of immediate addressing mode 
instructions of the form addi rd,rd,#immd are predicted and stored in the Loop Stride Speculation 
Table (LSST). The speculation performed by DSMT is to predict the content of a source 
register rd in LSST as rd=rd+iteration*immd, where iteration is the current iteration number 
speculatively executed. To avoid blind speculation on rd, each entry in LSST is associated 
with confidence (Conf) bits based on 2-bit saturation counters. To keep track of inter-thread 
dependent registers, each physical register is associated with a set of utility bits. They are: 
Ready (R) bit that indicates some instruction(s) logically preceding the current one in the 
thread’s program order has committed a value to the register; Dependency (D) bits that keep 
track of registers that have inter-thread dependencies; Load (L) bit that indicates that the 
register has been speculatively read from a predecessor context. Since register reads are 
speculative, a confidence based on 2-bit saturation counter is associated with each register 
and stored in the Register Read Confidence Table. Finally, to synchronize the execution of 



multiple threads, each context has associated a Join (J) bit, which is set to indicate that a 
thread has completed the execution of a single iteration in a loop. When this occurs, 
speculative contexts that could have finished earlier due to dynamic behavior must wait 
until the non-speculative context commits its results and transfers the non-speculative 
status to a new successor context. Transferring the non-speculative status comprises, 
copying the register values generated locally by the non-speculative context to the 
successor context, and updating the TCIU with the tag identification of the new non-
speculative context (the head). In DSMT, loads from different threads, can be executed 
speculatively. However, only the non-speculative threads are allowed to perform stores. 
The Memory Dataflow Mechanism ensures that the sequential semantics is not violated. 

4 Resource Allocation Policy for DSMT 

Our experiments presented in [Ort03] show that DSMT suffers from resource contention 
among threads. DSMT fetching policy modifies the original SMT’s policy by assigning a 
fetching port to the non speculative thread and sharing the other available port among the 
speculative threads using ICOUNT. However, as pointed out by [Caz04], when loops have 
dynamic behavior i.e. diverse resource demands, resource allocation policies can improve 
performance by assigning, dynamically, critical resources among the speculative and non-
speculative threads. Our experiments show that DSMT’s critical resources are the integer 
and floating point units, additionally to the load/store ports. The dynamic resource 

allocation policy proposed for DSMT is described by the following equation:  
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where E is the number of resource entries allocated to each thread, R total number of 
entries of a resource, T the total number of contexts in the processor, S is the sharing factor 
(to be determined experimentally), D is the number of threads with dynamic behavior.  

5 Conclusions 

We have presented the DSMT architecture and a resource allocation policy that 
dynamically allocates critical resources. The performance obtained by the use of this policy 
in loops with dynamic behavior will be evaluated experimentally. 
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