

Aalborg Universitet

Efficient Resource Allocation on a Dynamic Simultaneous Multithreaded Architecture

Ortiz-Arroyo, Daniel

Publication date:
2006

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Ortiz-Arroyo, D. (2006). Efficient Resource Allocation on a Dynamic Simultaneous Multithreaded Architecture.
Poster session presented at Advanced Computer Architecture and Compilation for Embedded Systems,
L'Aquila, Italy.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60395749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/efficient-resource-allocation-on-a-dynamic-simultaneous-multithreaded-architecture(d91a58a0-a33c-11dc-8188-000ea68e967b).html

Efficient Resource Allocation on a

Dynamic Simultaneous Multithreaded

Architecture

Daniel Ortiz-Arroyo1

Computer Science and Engineering Department,
Aalborg University Esbjerg,
Niels Bohrs Vej 8, 6700 Esbjerg, Denmark

ABSTRACT

In this paper we describe the Dynamic Simultaneous Multithreading (DSMT)
architecture, together with a simple resource allocation policy that may be employed to
improve its performance. DSMT exploits TLP and ILP available in single applications
on a SMT architecture core. In DSMT, threads are speculatively created and executed,
while special hardware mechanisms keep track of misspeculations and dependence
violations through registers and memory.

KEYWORDS: Thread Level Parallelism; Simultaneous Multithreading; Speculation

1 Introduction

In multithreaded architectures, TLP can be exploited using implicit or explicit mechanisms.
Implicit multithreaded architectures aim is to improve the execution time of a single
program, whereas explicit multithreading goal is to improve the execution time of a
multiprogrammed workload. Implicit multithreading comprises either static methods such
as parallelizing compilers or binary annotators to identify threads or dynamic techniques
that extract threads speculatively at run time from a single program. Explicitly
multithreaded architectures such as Simultaneous Multithreading (SMT) exploit efficiently
the resources in the processor by executing multiple independent threads simultaneously,
at the cost of a small increment in complexity. However, despite its advantages, being
SMT an explicit architecture, it does nothing to improve the performance of a single
program. Moreover, SMT may cause cache pollution because different threads are
competing for the shared cache and, as is described in [Caz04], the fetching policy
employed greatly impacts the performance of the processor.

This paper briefly describes an implicitly multithreaded architecture called Dynamic
Simultaneous Multithreading (DSMT) based on a SMT microarchitecture. We also describe a
resource allocation policy that can be used to improve DSMT’s performance. This paper is
organized as follows. Section 2 briefly describes previous related work. Section 3 provides
a detailed description of the DSMT microarchitecture. The resource allocation policy
proposed is briefly presented in Section 4. Finally Section 5 presents some conclusions.

1
 Email: do@cs.aaue.dk

2 Related Work

In Dynamic Multithreaded (DMT) processor [Akk98], threads are generated from loops
and procedure continuations, i.e., instructions from either after the call or backward branch.
Thus, it precludes the exploitation of the potentially high-degree of parallelism that exists
across inner loop iterations. Moreover, threads are allowed to be spawned out of program
order, which results in lower branch and return address prediction accuracies. These
factors lead to long threads that increase the chance of data dependence misspeculation. In
contrast, the Clustered Speculative Multithreaded (CSM) processor [Mar99] generates threads
from target of backward branches, in particular innermost iterations of a loop. In CSM,
inter-thread data dependencies through registers are resolved by performing data value
prediction. When a thread finishes, its output predictions are verified and mispredictions
are handled by selective re-execution. Inter-thread memory dependence speculation is
performed by means of a multi-value cache. This special cache memory stores, for each
address, as many different data words as the number of thread units. Among the SMT-
based implicitly multithreaded processors proposed, DSMT employs less complex
mechanisms comparatively with other similar architectures [Akk98, Mar99] specifically: a)
a simple mechanism based on utility bits to detect and resolve inter-thread dependencies
through registers and memory, b) no trace buffers or specialized cache structures, c) state
bits and simple flushing mechanisms perform control of speculation, and d) a simple loop
stride value prediction mechanism.

Diverse resource allocation policies for SMT processors have been proposed. The
goal of these mechanisms is to improve SMT’s performance, avoiding resource contention
by giving each thread fair access to resources. The dynamic resource allocation policies
presented in [Caz04] (DCRA) classify threads according to their demands on resources as
fast-slow, active-inactive. Special counters keep track of resource utilization.

3 DSMT Microarchitecture

DSMT operates either in non-DSMT, pre-DSMT or DSMT mode [Ort03]. In the non-DSMT
mode, there is only a single thread of execution and thus the processor behaves as a

Figure 2: TCIU and Multiple Contexts.

M

Reg. Read
Confidence Table

Continuation

Head Tail D_Anchor R_Anchor

J0 J1 J2 …

TCIU

Context

N-1

Context 0

PC V S

D L Register 0

H

Register 63

R

D L R

…

…

…

Conf Op R
d

Immd

LSST

…

Iteration Ctr. JN-1

Figure 1: DSMT Microarchitecture.

I I-cache Fetch
Unit

Scheduler

TCIU

Loop
Detection

Next_PC

PC

Good/bad loop

L2 Cache

Main Memory

DSMT mode

 Inst.
Queue

Contexts

RDF

 ROB

LSQ
MDF

 Reservation
Stations

Execution Unit

Integer Unit
ALU

Multiplier
Divider

FP Unit
Adder

Multiplier
Divider

Load/Store

D-cache

Decode/
Dispatch

superscalar processor. When a loop is detected, the processor transitions to the pre-DSMT
mode to detect not only live registers, intra- and inter-thread dependent registers, but also
those registers that are most likely used as induction variables in the loop. Later, if it is
determined that multithreaded execution will improve performance, the microarchitecture
transitions to the DSMT mode of execution where the overlapped execution of multiple
threads occurs. Figure 1 shows the organization of the DSMT microarchitecture. It consists
of a SMT architecture organized into nine pipelined stages: Fetch, Decode/Dispatch, Inter-
Thread Register Resolution, Issue, Execute, Memory, Write-back, Commit and Thread
Spawning. The Fetch stage fetches a block of instructions from a thread, but can also fetch
instructions from different threads based on the scheduling policy offered by the Scheduler.
The fetched instructions are then decoded, renamed, and dispatched to the Reservations
Stations (RSs) associated with each functional unit. At the Inter-Thread Register Resolution
stage, inter-thread dependencies through registers are resolved. Finally, during the Thread
Spawning stage speculative contexts are spawned and the control of thread-level
speculation is performed. To support simultaneous execution of multiple threads, each
thread has its own set of Instruction Queue (IQ), Reorder Buffer (ROB), and Context registers.
Each Context represents the state of a thread and the multiple Contexts are interfaced to the
Thread Creation and Initiation Unit (TCIU), which controls how threads are spawned and
executed. The Register and Memory Data Flow (MDF and RDF) mechanisms associated with
the Contexts and Load Store Queues (LSQ) keep track of inter-thread dependencies through
registers and memory respectively. The Loop Detection Unit is responsible for detecting
loops and supplying target addresses so that the Thread Creation and Instatiation Unit
(TCIU) which ultimately spawns multiple threads. Whenever a taken backward-branch
instruction is detected, its branch and target addresses are recorded in the Loop Detection
Unit. Later, a second branch instruction with the same branch target address causes the
processor to enter its pre-DSMT mode of execution. A loop is classified as good or bad
based on a “break even” policy, where the IPC measured for a loop during pre-DSMT
mode is compared against the observed Sustained IPC (SIPC) during previous run(s) of the
same loop in DSMT-mode. DSMT aims to guarantee that the DSMT mode of execution
will result in better performance comparatively with the non-DSMT mode of execution
regardless of misspeculations. The control of nested loop execution is handled by a special
stack structure associated with the Loop Detection Unit.

Figure 2 shows the multiple contexts in the processor physically interconnected in a
ring fashion. In DMST mode the thread spawning process starts by copying the target
address of a loop in the Continuation register to the PCs of each spawned context. To “jump
start” each thread, values detected during pre-DSMT mode of immediate addressing mode
instructions of the form addi rd,rd,#immd are predicted and stored in the Loop Stride Speculation
Table (LSST). The speculation performed by DSMT is to predict the content of a source
register rd in LSST as rd=rd+iteration*immd, where iteration is the current iteration number
speculatively executed. To avoid blind speculation on rd, each entry in LSST is associated
with confidence (Conf) bits based on 2-bit saturation counters. To keep track of inter-thread
dependent registers, each physical register is associated with a set of utility bits. They are:
Ready (R) bit that indicates some instruction(s) logically preceding the current one in the
thread’s program order has committed a value to the register; Dependency (D) bits that keep
track of registers that have inter-thread dependencies; Load (L) bit that indicates that the
register has been speculatively read from a predecessor context. Since register reads are
speculative, a confidence based on 2-bit saturation counter is associated with each register
and stored in the Register Read Confidence Table. Finally, to synchronize the execution of

multiple threads, each context has associated a Join (J) bit, which is set to indicate that a
thread has completed the execution of a single iteration in a loop. When this occurs,
speculative contexts that could have finished earlier due to dynamic behavior must wait
until the non-speculative context commits its results and transfers the non-speculative
status to a new successor context. Transferring the non-speculative status comprises,
copying the register values generated locally by the non-speculative context to the
successor context, and updating the TCIU with the tag identification of the new non-
speculative context (the head). In DSMT, loads from different threads, can be executed
speculatively. However, only the non-speculative threads are allowed to perform stores.
The Memory Dataflow Mechanism ensures that the sequential semantics is not violated.

4 Resource Allocation Policy for DSMT

Our experiments presented in [Ort03] show that DSMT suffers from resource contention
among threads. DSMT fetching policy modifies the original SMT’s policy by assigning a
fetching port to the non speculative thread and sharing the other available port among the
speculative threads using ICOUNT. However, as pointed out by [Caz04], when loops have
dynamic behavior i.e. diverse resource demands, resource allocation policies can improve
performance by assigning, dynamically, critical resources among the speculative and non-
speculative threads. Our experiments show that DSMT’s critical resources are the integer
and floating point units, additionally to the load/store ports. The dynamic resource

allocation policy proposed for DSMT is described by the following equation:










−

+
−

−

−

+

=

threadsespeculativfor
T

SDR
R

threadespeculativnonfor
T

SDR

E

1

)1(

1

)1(

where E is the number of resource entries allocated to each thread, R total number of
entries of a resource, T the total number of contexts in the processor, S is the sharing factor
(to be determined experimentally), D is the number of threads with dynamic behavior.

5 Conclusions

We have presented the DSMT architecture and a resource allocation policy that
dynamically allocates critical resources. The performance obtained by the use of this policy
in loops with dynamic behavior will be evaluated experimentally.

References

[Akk98] Akkary H. and Driscoll M., “A Dynamic Multithreading Processor,” 31st Int’l
Symp. On Microarchitecture, Dec 1998.
[Mar99] Marcuello P. and Gonzales A., “Clustered Speculative Multithreaded Processors,”
Proc. of the Int’l. Conference on Supercomputing (ICS’99), 1999.
[Caz04] Cazorla, F.J.; Ramirez, A.; Valero, M.; Fernandez, E., "Dynamically Controlled
Resource Allocation in SMT Processors," Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on , vol., no.pp. 171- 182, 04-08 Dec. 2004
[Ort03] Ortiz-Arroyo D. and Lee B., "Dynamic Simultaneous Multithreaded Architecture,"
16th International Conference on Parallel and Distributed Computing Systems (PDCS-2003),
August 13-15, 2003.

