1,459 research outputs found

    Influence of plasticizers on the compostability of polylactic acid

    Full text link
    [EN] Poly(lactic acid) (PLA) has gained considerable attention as an interesting biobased and biodegradable polymer for film for food packaging applications, due to its many advantages such as biobased nature, high transparency and inherent biodegradable/compostable character. With the dual objective to improve PLA processing performance and to obtain flexible materials, plasticizer are use as strategy for extending PLA applications as compostable film for food packaging applications. Several plasticizers (i.e.: citrate esters, polyethylene glycol (PEG), oligomeric lactic acid (OLA), etc.) as well as essential oils and maleinized and/or epoxidized seed oils are widely used for flexible PLA film production. This article reviews the most relevant compostable PLA-plasticized flexible film formulations with an emphasis on plasticizer effect on the compostability rate of PLA polymeric matrix with the aim to get information of the possibility to use plasticized PLAbased formulatios as compostable films for sustainable industrial packaging production.M.P. Arrieta wants to thank Prof. Juan López-Martínez from Instituto de Tecnología de Materiales, Universitat Politècnica de València (EPSA-UPV, Spain) and Prof. José María Kenny from Civil and Environmental Engineering Department, Materials Engineering Centre, University of Perugia (UdR INSTM,, Italy), for their continuous support.Arrieta, MP. (2021). Influence of plasticizers on the compostability of polylactic acid. Journal of Applied Research in Technology & Engineering. 2(1):1-9. https://doi.org/10.4995/jarte.2021.14772OJS1921Abdelwahab, M.A., Flynn, A., Chiou, B.S., Imam, S., Orts, W., Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. https://doi.org/10.1016/j.polymdegradstab.2012.05.036Agüero, A., Morcillo, M.C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D.,... Fenollar, O. (2019). Study of the influence of the reprocessing cycles on the final properties of polylactide pieces obtained by injection molding. Polymers, 11(12), 1908. https://doi.org/10.3390/polym11121908Aragón-Gutierrez, A., Arrieta, M.P., López-González, M., Fernández-García, M., López, D. (2020). Hybrid Biocomposites Based on Poly (Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 13(21), 4910. https://doi.org/10.3390/ma13214910Arrieta, M.P., Fortunati, E., Dominici, F., López, J., Kenny, J.M. (2015). Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121(0), 265-275. https://doi.org/10.1016/j.carbpol.2014.12.056Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M. (2014a). Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 107(0), 16-24.https://doi.org/10.1016/j.carbpol.2014.02.044Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M. (2014b). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. https://doi.org/10.1016/j.polymdegradstab.2014.05.010Arrieta, M.P., García, A.D., López, D., Fiori, S., Peponi, L. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials, 9(3). https://doi.org/10.3390/nano9030346Arrieta, M.P., López, J., Hernández, A., Rayón, E. (2014). Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. https://doi.org/10.1016/j.eurpolymj.2013.11.009Arrieta, M.P., López, J., López, D., Kenny, J.M., Peponi, L. (2016a). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA-PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290- 301. https://doi.org/10.1016/j.indcrop.2015.12.058Arrieta, M.P., López, J., López, D., Kenny, J.M., Peponi, L. (2016b). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. https://doi.org/10.1016/j.polymdegradstab.2016.02.027Arrieta, M.P., López, J., Rayón, E., Jiménez, A. (2014b). Disintegrability under composting conditions of plasticized PLAPHB blends. Polymer Degradation and Stability. https://doi.org/10.1016/j.polymdegradstab.2014.01.034Arrieta, M.P., Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. https://doi.org/10.1016/j.eurpolymj.2017.02.028Arrieta, M.P., Peponi, L., López, D., Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. https://doi.org/10.1016/j.indcrop.2017.10.042Arrieta, M.P., Perdiguero, M., Fiori, S., Kenny, J.M., Peponi, L. (2020). Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 179. https://doi.org/10.1016/j.polymdegradstab.2020.109226Arrieta, M.P., Samper, M.D., Aldas, M., López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9), 1008. https://doi.org/10.3390/ma10091008Arrieta, M.P., Sessini, V., Peponi, L. (2017). Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. European Polymer Journal, 94, 111-124.https://doi.org/10.1016/j.eurpolymj.2017.06.047Auras, R.A., Harte, B., Selke, S., Hernandez, R. (2003). Mechanical, physical, and barrier properties of poly(lactide) films. Journal of Plastic Film and Sheeting, 19(2), 123-135. https://doi.org/10.1177/8756087903039702Auras, R., Harte, B., Selke, S.E. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864. https://doi.org/10.1002/mabi.200400043Balart, J., Montanes, N., Fombuena, V., Boronat, T., Sánchez-Nacher, L. (2018). Disintegration in compost conditions and water uptake of green composites from poly (lactic acid) and hazelnut shell flour. Journal of Polymers and the Environment, 26(2), 701-715. https://doi.org/10.1007/s10924-017-0988-3Beltrán, F.R., Arrieta, M.P., Gaspar, G., de la Orden, M.U., Urreaga, J.M. (2020). Effect of lignocellulosic nanoparticles extracted from yerba mate (Ilex paraguariensis) on the structural, thermal, optical and barrier properties of mechanically recycled poly(lactic acid). Polymers, 12(8). https://doi.org/10.3390/polym12081690Beltrán, F.R., Lorenzo, V., de la Orden, M.U., Martínez-Urreaga, J. (2016). Effect of different mechanical recycling processes on the hydrolytic degradation of poly(L-lactic acid). Polymer Degradation and Stability, 133, 339-348. https://doi.org/10.1016/j.polymdegradstab.2016.09.018Bioplastics, E. (2020). from https://www.european-bioplastics.org/bioplastics/materials/Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S.,... Kenny, J.M. (2017). Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 10(4), 770-780. https://doi.org/10.1007/s11947-016-1846-3Burgos, N., Martino, V.P., Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. https://doi.org/10.1016/j.polymdegradstab.2012.11.009Carbonell-Verdu, A., Ferri, J.M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. https://doi.org/10.3144/expresspolymlett.2018.69Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259.https://doi.org/10.1016/j.eurpolymj.2017.04.013Carbonell-Verdu, A., Samper, M.D., Garcia-Garcia, D., Sanchez-Nacher, L., Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. https://doi.org/10.1016/j.indcrop.2017.04.050Fortunati, E., Armentano, I., Iannoni, A., Kenny, J. (2010). Development and thermal behaviour of ternary PLA matrix composites. Polymer Degradation and Stability, 95(11), 2200-2206. https://doi.org/10.1016/j.polymdegradstab.2010.02.034Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L.A., Kenny, J. (2012a). Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 97(10), 2027-2036. https://doi.org/10.1016/j.polymdegradstab.2012.03.027Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J.M., Torre, L. (2014). Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 56(1), 77-91. https://doi.org/10.1016/j.eurpolymj.2014.03.030Fortunati, E., Puglia, D., Santulli, C., Sarasini, F., Kenny, J.M. (2012b). Biodegradation of Phormium tenax/poly(lactic acid) composites. Journal of Applied Polymer Science, 125(SUPPL. 2), E562-E572. https://doi.org/10.1002/app.36839Garcia-Garcia, D., Carbonell-Verdu, A., Arrieta, M.P., López-Martínez, J., Samper, M.D. (2020). Improvement of PLA film ductility by plasticization with epoxidized karanja oil. Polymer Degradation and Stability, 179. https://doi.org/10.1016/j.polymdegradstab.2020.109259Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. https://doi.org/10.1111/j.1541-4337.2010.00126.xKale, G., Auras, R., Singh, S.P. (2006). Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment, 14(3), 317-334. https://doi.org/10.1007/s10924-006-0015-6Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S.E., Singh, S.P. (2007). Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience, 7(3), 255-277. https://doi.org/10.1002/mabi.200600168Khabbaz, F., Karlsson, S., Albertsson, A.C. (2000). PY-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment. Journal of Applied Polymer Science, 78(13), 2369-2378. https://doi.org/10.1002/1097-4628(20001220)78:133.0.CO;2-NLim, L.T., Auras, R., Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science (Oxford), 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S.,... Torre, L. (2019). Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 223. https://doi.org/10.1016/j.carbpol.2019.115131Luzi, F., Fortunati, E., Puglia, D., Petrucci, R., Kenny, J.M., Torre, L. (2015). Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 121, 105-115. https://doi.org/10.1016/j.polymdegradstab.2015.08.016Madhavan, N.K., Nimisha Rajendran, N., Rojan Pappy, J. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Richert, J., Malinowski, R.,... Kowalczuk, M. (2016). Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 52, 69-76. https://doi.org/10.1016/j.wasman.2016.04.016Navarro-Baena, I., Marcos-Fernández, A., Fernández-Torres, A., Kenny, J.M., Peponi, L. (2014). Synthesis of PLLA-b-PCLb-PLLA linear tri-block copolymers and their corresponding poly (ester-urethane) s: effect of the molecular weight on their crystallisation and mechanical properties. RSC advances, 4(17), 8510-8524. https://doi.org/10.1039/c3ra44786cOyama, H.T., Tanishima, D., Maekawa, S. (2016). Poly(malic acid-co-L-lactide) as a superb degradation accelerator for Poly(l-lactic acid) at physiological conditions. Polymer Degradation and Stability, 134, 265-271. https://doi.org/10.1016/j.polymdegradstab.2016.10.016Pawlak, F., Aldas, M., Parres, F., López-Martínez, J., Arrieta, M.P. (2020). Silane-functionalized sheep wool fibers from dairy industry waste for the development of plasticized pla composites with maleinized linseed oil for injection-molded parts. Polymers, 12(11), 1-22. https://doi.org/10.3390/polym12112523Petersson, L., Kvien, I., Oksman, K. (2007). Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11), 2535-2544. https://doi.org/10.1016/j.compscitech.2006.12.012Plastic Europe. (2019). Plastics - the Facts 2019. An analysis of European plastics production, demand and waste data., from https://www.plasticseurope.org/es/resources/publications/1804-plastics-facts-2019Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., Torres-Giner, S. (2018b). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. https://doi.org/10.1016/j.compositesb.2018.04.017Quiles-Carrillo, L., Montanes, N., Lagaron, J.M., Balart, R., Torres-Giner, S. (2018a). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. https://doi.org/10.1002/pi.5588Ramos, M., Fortunati, E., Beltrán, A., Peltzer, M., Cristofaro, F., Visai, L.,... Garrigós, M.C. (2020). Controlled Release, Disintegration, Antioxidant, and Antimicrobial Properties of Poly (Lactic Acid)/Thymol/Nanoclay Composites. Polymers, 12(9), 1878. https://doi.org/10.3390/polym12091878Ramos, M., Fortunati, E., Peltzer, M., Jimenez, A., Kenny, J.M., Garrigós, M.C. (2016). Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 132, 2-10. https://doi.org/10.1016/j.polymdegradstab.2016.05.015Samper, M.D., Arrieta, M.P., Ferrándiz, S., López, J. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23). https://doi.org/10.1002/app.41161Samper, M.D., Bertomeu, D., Arrieta, M.P., Ferri, J.M., López-Martínez, J. (2018). Interference of biodegradable plastics in the polypropylene recycling process. Materials, 11(10). https://doi.org/10.3390/ma11101886Shah, A.A., Hasan, F., Hameed, A., Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005Shinoda, H., Asou, Y., Kashima, T., Kato, T., Tseng, Y., Yagi, T. (2003). Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone). Polymer Degradation and Stability, 80(2), 241-250. https://doi.org/10.1016/S0141-3910(02)00404-4Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1526), 2127-2139. https://doi.org/10.1098/rstb.2008.0289Sriyapai, P., Chansiri, K., Sriyapai, T. (2018). Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology, 87(2), 290-300. https://doi.org/10.1134/S0026261718020157UNE-EN ISO. (2016). Plastics - Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test (ISO 20200:2015).Villegas, C., Arrieta, M.P., Rojas, A., Torres, A., Faba, S., Toledo, M.J.,... Valenzuela, X. (2019). PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Composites Part B: Engineering, 176. https://doi.org/10.1016/j.compositesb.2019.107336Vink, E.T.H., Rábago, K.R., Glassner, D.A., Gruber, P.R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5Yagi, H., Ninomiya, F., Funabashi, M., Kunioka, M. (2013). Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polymer Degradation and Stability, 98(6), 1182-1187. https://doi.org/10.1016/j.polymdegradstab.2013.03.01

    AN EXERGY COST ANALYSIS OF A COGENERATION PLANT

    Get PDF
    The exergy analysis, including the calculation of the unit exergetic cost of all flows of the cogeneration plant, was the main purpose of the thermoeconomic analysis of the STAG (STeam And Gas) combined cycle CHP (Combined Heat and Power) plant. The combined cycle cogeneration plant is composed of a GE10 gas turbine (11250 kW) coupled with a HRSG (Heat Recovery Steam Generator) and a condensing extraction steam turbine. The GateCycleTM Software was used for the modeling and simulation of the combined cycle CHP plant thermal scheme, and calculation of the thermodynamic properties of each flow (Mass Flow, Pressure, Temperature, Enthalpy). The entropy values for water and steam were obtained from the Steam Tab software while the entropy and exergy of the exhaust gases were calculated as instructed by. For the calculation of the unit exergetic cost was used the neguentropy and Structural Theory of Thermoeconomic. The GateCycleTM calculations results were exported to an Excel sheet to carry out the exergy analysis and the unit exergetic cost calculations with the thermoeconomic model that was created for matrix inversion solution. Several simulations were performed varying separately five important parameters: the Steam turbine exhaust pressure, the evaporator pinch point temperature, the steam turbine inlet temperature, Rankine cycle operating pressure and the stack gas temperature to determine their impact in the recovery cycle heat exchangers transfer area, power generation and unit exergetic cost

    Supersolutions for a class of semilinear heat equations

    Full text link
    A semilinear heat equation ut=Δu+f(u)u_{t}=\Delta u+f(u) with nonnegative initial data in a subset of L1(Ω)L^{1}(\Omega) is considered under the assumption that ff is nonnegative and nondecreasing and ΩRn\Omega\subseteq \R^{n}. A simple technique for proving existence and regularity based on the existence of supersolutions is presented, then a method of construction of local and global supersolutions is proposed. This approach is applied to the model case f(s)=spf(s)=s^{p}, ϕLq(Ω)\phi\in L^{q}(\Omega): new sufficient conditions for the existence of local and global classical solutions are derived in the critical and subcritical range of parameters. Some possible generalisations of the method to a broader class of equations are discussed.Comment: Expanded version of the previous submission arXiv:1111.0258v1. 14 page

    Microstructure, mechanical, and thermogravimetric characterization of cellulosic by-products obtained from biomass seeds

    Full text link
    The microstructural, thermal, and nanomechanical characterization of biomass by-products coming from the food industry were studied. Scanning electron microscopy showed a microstructure formed by polygonal grains. The thermal behavior of seeds, evaluated by thermogravimetric analysis, revealed three main components (hemicellulose, cellulose, and lignin). Walnut shell showed the highest thermal stability and also the highest amount of lignin. The nanomechanical aspects were evaluated by nanoindentation. Samples with higher amount of cellulose presented minor modulus values. In accordance with the thermal stability, the highest modulus and hardness were observed in walnut. These by-products could be useful as reinforcement materials for biodegradable plastic industry.This work has been supported by the Spanish Ministry of Science and Innovation (MAT2011-28468-C02-02) and the Autonomous Government of Valencia (Spain) through the research program Geronimo Forteza (62/2010, 9 de Junio DOCV no 6291). M.P. Arrieta is granted by Santiago Grisolia program (GRISOLIA/2011/007).Rayón Encinas, E.; Ferrándiz Bou, S.; Rico Beneito, MI.; López Martínez, J.; Arrieta, MP. (2015). Microstructure, mechanical, and thermogravimetric characterization of cellulosic by-products obtained from biomass seeds. International Journal of Food Properties. 18(6):1211-1222. https://doi.org/10.1080/10942912.2014.884578S1211122218

    Utility of in vitro culture to the study of plant mitochondrial genome configuration and its dynamic features

    Get PDF
    Recombination activity plays an important role in the heteroplasmic and stoichiometric variation of plant mitochondrial genomes. Recent studies show that the nuclear gene MSH1 functions to suppress asymmetric recombination at 47 repeat pairs within the Arabidopsis mitochondrial genome. Two additional nuclear genes, RECA3 and OSB1, have also been shown to participate in the control of mitochondrial DNA exchange in Arabidopsis. Here, we demonstrate that repeat-mediated de novo recombination is enhanced in Arabidopsis and tobacco mitochondrial genomes following passage through tissue culture, which conditions the MSH1 and RECA3 suppressions. The mitochondrial DNA changes arising through in vitro culture in tobacco were reversible by plant regeneration, with correspondingly restored MSH1 transcript levels. For a growing number of plant species, mitochondrial genome sequence assembly has been complicated by insufficient information about recombinationally active repeat content. Our data suggest that passage through cell culture provides a rapid and effective means to decipher the dynamic features of a mitochondrial genome by comparative analysis of passaged and non-passaged mitochondrial DNA samples following next-generation sequencing and assembly

    A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic

    Get PDF
    [EN] The interaction between gum rosin and gum rosin derivatives with Mater-Bi type bioplastic, a biodegradable and compostable commercial bioplastic, were studied. Gum rosin and two pentaerythritol esters of gum rosin (Lurefor 125 resin and Unik Tack P100 resin) were assessed as sustainable compatibilizers for the components of Mater-Bi® NF 866 polymeric matrix. To study the influence of each additive in the polymeric matrix, each gum rosin-based additive was compounded in 15 wt % by melt-extrusion and further injection molding process. Then, the mechanical properties were assessed, and the tensile properties and impact resistance were determined. Microscopic analyses were carried out by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atomic force microscopy with nanomechanical assessment (AFM-QNM). The oxygen barrier and wettability properties were also assayed. The study revealed that the commercial thermoplastic starch is mainly composed of three phases: A polybutylene adipate-co-terephthalate (PBAT) phase, an amorphous phase of thermoplastic starch (TPSa), and a semi-crystalline phase of thermoplastic starch (TPSc). The poor miscibility among the components of the Mater-Bi type bioplastic was confirmed. Finally, the formulations with the gum rosin and its derivatives showed an improvement of the miscibility and the solubility of the components depending on the additive usedThis research was funded by Spanish Ministry of Economy and Competitiveness (MINECO), project: PROMADEPCOL (MAT2017-84909-C2-2-R) and M.P.A. s contract: Juan de la Cierva-Incorporación (FJCI-2017-33536).Aldas-Carrasco, MF.; Rayón, E.; López-Martínez, J.; Arrieta, MP. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers. 12(1):1-17. https://doi.org/10.3390/polym12010226S117121Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035Elfehri Borchani, K., Carrot, C., & Jaziri, M. (2015). Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. doi:10.1016/j.compositesa.2015.08.023Sessini, V., Arrieta, M. P., Fernández-Torres, A., & Peponi, L. (2018). Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydrate Polymers, 179, 93-99. doi:10.1016/j.carbpol.2017.09.070Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236Sessini, V., Navarro-Baena, I., Arrieta, M. P., Dominici, F., López, D., Torre, L., … Peponi, L. (2018). Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 152, 126-138. doi:10.1016/j.polymdegradstab.2018.04.012Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025Kaseem, M., Hamad, K., & Deri, F. (2012). Thermoplastic starch blends: A review of recent works. Polymer Science Series A, 54(2), 165-176. doi:10.1134/s0965545x1202006xOlivato, J. B., Nobrega, M. M., Müller, C. M. O., Shirai, M. A., Yamashita, F., & Grossmann, M. V. E. (2013). Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate Polymers, 92(2), 1705-1710. doi:10.1016/j.carbpol.2012.11.024Yoshida, Y., & Uemura, T. (1994). Properties and Applications of «Mater-Bi». Biodegradable Plastics and Polymers, 443-450. doi:10.1016/b978-0-444-81708-2.50049-xNainggolan, H., Gea, S., Bilotti, E., Peijs, T., & Hutagalung, S. D. (2013). Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite. Beilstein Journal of Nanotechnology, 4, 325-329. doi:10.3762/bjnano.4.37Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Morreale, M., Scaffaro, R., Maio, A., & La Mantia, F. P. (2008). Effect of adding wood flour to the physical properties of a biodegradable polymer. Composites Part A: Applied Science and Manufacturing, 39(3), 503-513. doi:10.1016/j.compositesa.2007.12.002Nayak, S. K. (2010). Biodegradable PBAT/Starch Nanocomposites. Polymer-Plastics Technology and Engineering, 49(14), 1406-1418. doi:10.1080/03602559.2010.496397González Seligra, P., Eloy Moura, L., Famá, L., Druzian, J. I., & Goyanes, S. (2016). Influence of incorporation of starch nanoparticles in PBAT/TPS composite films. Polymer International, 65(8), 938-945. doi:10.1002/pi.5127Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296dWilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513Rodríguez-García, A., Martín, J. A., López, R., Mutke, S., Pinillos, F., & Gil, L. (2015). Influence of climate variables on resin yield and secretory structures in tapped Pinus pinaster Ait. in central Spain. Agricultural and Forest Meteorology, 202, 83-93. doi:10.1016/j.agrformet.2014.11.023Davis, G., & Song, J. H. (2006). Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products, 23(2), 147-161. doi:10.1016/j.indcrop.2005.05.004Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867Butt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003J. Roa, J., Rayon, E., Morales, M., & Segarra, M. (2012). Contact Mechanics at Nanometric Scale Using Nanoindentation Technique for Brittle and Ductile Materials. Recent Patents on Engineering, 6(2), 116-126. doi:10.2174/187221212801227130Hernández‐Fernández, J., Rayón, E., López, J., & Arrieta, M. P. (2019). Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromolecular Materials and Engineering, 304(11), 1900379. doi:10.1002/mame.201900379Taguet, A., Huneault, M. A., & Favis, B. D. (2009). Interface/morphology relationships in polymer blends with thermoplastic starch. Polymer, 50(24), 5733-5743. doi:10.1016/j.polymer.2009.09.055Zhang, S., He, Y., Lin, Z., Li, J., & Jiang, G. (2019). Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polymer Testing, 76, 385-395. doi:10.1016/j.polymertesting.2019.04.005Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke, 65(1-2), 61-72. doi:10.1002/star.201200201Van Soest, J. J. G., De Wit, D., & Vliegenthart, J. F. G. (1996). Mechanical properties of thermoplastic waxy maize starch. Journal of Applied Polymer Science, 61(11), 1927-1937. doi:10.1002/(sici)1097-4628(19960912)61:113.0.co;2-lZhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. doi:10.1080/10408398.2011.636156Yu, J., Gao, J., & Lin, T. (1996). Biodegradable thermoplastic starch. Journal of Applied Polymer Science, 62(9), 1491-1494. doi:10.1002/(sici)1097-4628(19961128)62:93.0.co;2-1Zullo, R., & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydrate Polymers, 77(2), 376-383. doi:10.1016/j.carbpol.2009.01.007Sousa, F. M., Costa, A. R. M., Reul, L. T. A., Cavalcanti, F. B., Carvalho, L. H., Almeida, T. G., & Canedo, E. L. (2018). Rheological and thermal characterization of PCL/PBAT blends. Polymer Bulletin, 76(3), 1573-1593. doi:10.1007/s00289-018-2428-5Mittal, V., Akhtar, T., Luckachan, G., & Matsko, N. (2014). PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid and Polymer Science, 293(2), 573-585. doi:10.1007/s00396-014-3458-7Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015Hambleton, A., Fabra, M.-J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion–based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi:10.1016/j.jfoodeng.2009.01.00

    Interference of biodegradable plastics in the polypropylene recycling process

    Full text link
    [EN] Recycling polymers is common due to the need to reduce the environmental impact of these materials. Polypropylene (PP) is one of the polymers called commodities polymers' and it is commonly used in a wide variety of short-term applications such as food packaging and agricultural products. That is why a large amount of PP residues that can be recycled are generated every year. However, the current increasing introduction of biodegradable polymers in the food packaging industry can negatively affect the properties of recycled PP if those kinds of plastics are disposed with traditional plastics. For this reason, the influence that generates small amounts of biodegradable polymers such as polylactic acid (PLA), polyhydroxybutyrate (PHB) and thermoplastic starch (TPS) in the recycled PP were analyzed in this work. Thus, recycled PP was blended with biodegradables polymers by melt extrusion followed by injection moulding process to simulate the industrial conditions. Then, the obtained materials were evaluated by studding the changes on the thermal and mechanical performance. The results revealed that the vicat softening temperature is negatively affected by the presence of biodegradable polymers in recycled PP. Meanwhile, the melt flow index was negatively affected for PLA and PHB added blends. The mechanical properties were affected when more than 5 wt.% of biodegradable polymers were present. Moreover, structural changes were detected when biodegradable polymers were added to the recycled PP by means of FTIR, because of the characteristic bands of the carbonyl group (between the band 1700-1800 cm(-1)) appeared due to the presence of PLA, PHB or TPS. Thus, low amounts (lower than 5 wt.%) of biodegradable polymers can be introduced in the recycled PP process without affecting the overall performance of the final material intended for several applications, such as food packaging, agricultural films for farming and crop protection.This research was funded by Conselleria d'Educacio, Investigacio, Cultura y Esport de la Generalitat Valenciana, grant number APOSTD/2018/209.Samper, M.; Bertomeu, D.; Arrieta, MP.; Ferri, JM.; López-Martínez, J. (2018). Interference of biodegradable plastics in the polypropylene recycling process. Materials. 11(10):1-18. https://doi.org/10.3390/ma11101886S1181110Plastics Europe, Plastics—The Facts 2017https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdfAres, A., Bouza, R., Pardo, S. G., Abad, M. J., & Barral, L. (2010). Rheological, Mechanical and Thermal Behaviour of Wood Polymer Composites Based on Recycled Polypropylene. Journal of Polymers and the Environment, 18(3), 318-325. doi:10.1007/s10924-010-0208-xBodar, C., Spijker, J., Lijzen, J., Waaijers-van der Loop, S., Luit, R., Heugens, E., … Traas, T. (2018). Risk management of hazardous substances in a circular economy. Journal of Environmental Management, 212, 108-114. doi:10.1016/j.jenvman.2018.02.014Alam, O., Wang, S., & Lu, W. (2018). Heavy metals dispersion during thermal treatment of plastic bags and its recovery. Journal of Environmental Management, 212, 367-374. doi:10.1016/j.jenvman.2018.02.034Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. doi:10.1016/j.tifs.2008.07.003Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R., & Marconcini, J. M. (2016). Biodegradable Blends with Potential Use in Packaging: A Comparison of PLA/Chitosan and PLA/Cellulose Acetate Films. Journal of Polymers and the Environment, 24(4), 363-371. doi:10.1007/s10924-016-0785-4Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55Arrieta, M. P., López, J., Rayón, E., & Jiménez, A. (2014). Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 108, 307-318. doi:10.1016/j.polymdegradstab.2014.01.034Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 100(5), 1705-1710. doi:10.1016/j.biortech.2008.09.026Neumann, I. A., Flores-Sahagun, T. H. S., & Ribeiro, A. M. (2017). Biodegradable poly (l-lactic acid) (PLLA) and PLLA-3-arm blend membranes: The use of PLLA-3-arm as a plasticizer. Polymer Testing, 60, 84-93. doi:10.1016/j.polymertesting.2017.03.013Khalid, S., Yu, L., Meng, L., Liu, H., Ali, A., & Chen, L. (2017). Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance. Journal of Applied Polymer Science, 134(46), 45504. doi:10.1002/app.45504Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008Cosate de Andrade, M. F., Souza, P. M. S., Cavalett, O., & Morales, A. R. (2016). Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. Journal of Polymers and the Environment, 24(4), 372-384. doi:10.1007/s10924-016-0787-2Navarro, R., Ferrándiz, S., López, J., & Seguí, V. J. (2008). The influence of polyethylene in the mechanical recycling of polyethylene terephtalate. Journal of Materials Processing Technology, 195(1-3), 110-116. doi:10.1016/j.jmatprotec.2007.04.126Navarro, R., López, J., Parres, F., & Ferrándiz, S. (2011). Process behavior of compatible polymer blends. Journal of Applied Polymer Science, 124(3), 2485-2493. doi:10.1002/app.35260Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Crespo-Amorós, J. E., López, J., Perejón, A., & Criado, J. M. (2010). Quantitative Characterization of Multicomponent Polymers by Sample-Controlled Thermal Analysis. Analytical Chemistry, 82(21), 8875-8880. doi:10.1021/ac101651gAlaerts, L., Augustinus, M., & Van Acker, K. (2018). Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability, 10(5), 1487. doi:10.3390/su10051487Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., O-Charoen, N., Pavasupree, S., & Hamada, H. (2016). Effect of Compatibilizer on PLA/PP Blend for Injection Molding. Energy Procedia, 89, 353-360. doi:10.1016/j.egypro.2016.05.046Yoo, T. W., Yoon, H. G., Choi, S. J., Kim, M. S., Kim, Y. H., & Kim, W. N. (2010). Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromolecular Research, 18(6), 583-588. doi:10.1007/s13233-010-0613-yRosa, D. S., Guedes, C. G. F., & Carvalho, C. L. (2007). Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. Journal of Materials Science, 42(2), 551-557. doi:10.1007/s10853-006-1049-9Sadi, R. K., Kurusu, R. S., Fechine, G. J. M., & Demarquette, N. R. (2011). Compatibilization of polypropylene/ poly(3-hydroxybutyrate) blends. Journal of Applied Polymer Science, 123(6), 3511-3519. doi:10.1002/app.34853Parres, F., Balart, R., López, J., & García, D. (2008). Changes in the mechanical and thermal properties of high impact polystyrene (HIPS) in the presence of low polypropylene (PP) contents. Journal of Materials Science, 43(9), 3203-3209. doi:10.1007/s10853-008-2555-8Fekete, E., Földes, E., & Pukánszky, B. (2005). Effect of molecular interactions on the miscibility and structure of polymer blends. European Polymer Journal, 41(4), 727-736. doi:10.1016/j.eurpolymj.2004.10.038Macaúbas, P. H. P., & Demarquette, N. R. (2002). Time-temperature superposition principle applicability for blends formed of immiscible polymers. Polymer Engineering & Science, 42(7), 1509-1519. doi:10.1002/pen.11047Polymer Properties Databasehttps://polymerdatabase.com/polymer%20classes/Intro.htmlGoonoo, N., Bhaw-Luximon, A., & Jhurry, D. (2015). Biodegradable polymer blends: miscibility, physicochemical properties and biological response of scaffolds. Polymer International, 64(10), 1289-1302. doi:10.1002/pi.4937Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433-446. doi:10.1016/j.eurpolymj.2015.10.036Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y., & Endo, T. (2004). Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polymer Degradation and Stability, 86(2), 197-208. doi:10.1016/j.polymdegradstab.2004.03.001Sessini, V., Raquez, J.-M., Lourdin, D., Maigret, J.-E., Kenny, J. M., Dubois, P., & Peponi, L. (2017). Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 218(24), 1700388. doi:10.1002/macp.201700388Gerard, T., Budtova, T., Podshivalov, A., & Bronnikov, S. (2014). Polylactide/poly(hydroxybutyrate-co-hydroxyvalerate) blends: Morphology and mechanical properties. Express Polymer Letters, 8(8), 609-617. doi:10.3144/expresspolymlett.2014.64Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21(5), 604-617. doi:10.1108/rpj-09-2014-0135Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Du, Y.-L., Cao, Y., Lu, F., Li, F., Cao, Y., Wang, X.-L., & Wang, Y.-Z. (2008). Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polymer Testing, 27(8), 924-930. doi:10.1016/j.polymertesting.2008.08.00

    Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite

    Get PDF
    [EN] In this work, the effect of the addition of different amount of nanosized hydroxyapatite (nHA) on the shape memory behavior of blends based on poly (lactic acid) (PLA) and poly (epsilon-caprolactone) (PCL) has been studied. In particular PLA/PCL blend with 70 wt % PLA has been reinforced with 0.5, 1 and 3 wt % nHA. Moreover, the relationship between the morphology and the final properties of the nanocomposites has been investigated by field emission scanning electron microscopy, confocal Raman spectroscopy and atomic force microscopy. In particular, PeakForce has been used to study quantitative nanomechanical properties of the multifunctional materials leading to conclusion that nHA increase the phase separation between PLA and PCL as well as act as reinforcements for the PCL-rich phase of the nanocomposites. Furthermore, excellent thermally-activated shape memory response has been obtained for all the nanocomposites at 55 degrees C. Finally, the disintegration under composting conditions at laboratory scale level was studied in order to confirm the biodegradable character of these nanocomposites. Indeed, these materials are able to be used for biomedical issues as well as for packaging applications where both thermally-activated shape memory effect and biodegradability are requested.Authors thank the Spanish Ministry of Economy, Industry and Competitiveness, MINEICO, (MAT2017-88123-P) and the Regional Government of Madrid (S2013/MIT-2862) for the economic support. M.P.A. and L.P. acknowledge the Juan de la Cierva (FJCI-2014-20630) and Ramon y Cajal (RYC-2014-15595) contracts from the MINEICO, respectively. The authors also thanks CSIC for the I-Link project (I-Link1149).Peponi, L.; Sessini, V.; Arrieta, MP.; Navarro-Baena, I.; Sonseca Olalla, Á.; Dominici, F.; Giménez Torres, E.... (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability. 151:36-51. https://doi.org/10.1016/j.polymdegradstab.2018.02.019S365115

    Innovative solutions and challenges to increase the use of poly(3-hydroxybutyrate) in food packaging and disposables

    Full text link
    [EN] Poly(3-hydroxybutyrate) (PHB) has gain in recent years a huge interest in the food packaging field due to its renewable origin from waste as well as non-food crops, high mechanical strength, medium-to-high barrier performance, and inherent biodegradability in natural environments. Despite these advantages, PHB also shows a narrow processing window and high brittleness since this homopolyester shows low thermal stability and high crystallinity, limiting its industrial application. The present review provides an updated state of the art of the most relevant aspects in terms of processing and properties of PHB materials with a particular emphasis for their use in sustainable food packaging. It also describes the most potential strategies that can be applied to improve both the processability and mechanical properties of PHB, including the melt blending with green plasticizers and flexible biodegradable polymers as well as the development of more ductile co-polyesters. Finally, the waste management of the newly developed PHB-based articles is discussed, from their potential compostability to develop more biopolymers to more economically favored alternatives such as mechanical and chemical recycling technologies.This work was funded by the Spanish Ministry of Science and Innovation (MICINN, Spain), grant PID2021-123753NA-C32 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", by the "European Union"; Comunidad de Madrid (Spain) by CIRCULAGROPLAST, a research Project that has been funded by the Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Politécnica de Madrid; as well as by the Generalitat Valenciana (Spain) through the BEST Program (CIBEST/2021/94). S. Torres-Giner acknowledges the Spanish Ministry of Science and Innovation (MICINN, Spain) for his Ramón y Cajal contract (RYC2019-027784-I).Garcia-Garcia, D.; Quiles-Carrillo, L.; Balart, R.; Torres-Giner, S.; Arrieta, MP. (2022). Innovative solutions and challenges to increase the use of poly(3-hydroxybutyrate) in food packaging and disposables. European Polymer Journal. 178:1-20. https://doi.org/10.1016/j.eurpolymj.2022.11150512017
    corecore