34 research outputs found

    DIRAC framework evaluation for the Fermi\boldsymbol{Fermi}-LAT and CTA experiments

    Full text link
    DIRAC (Distributed Infrastructure with Remote Agent Control) is a general framework for the management of tasks over distributed heterogeneous computing environments. It has been originally developed to support the production activities of the LHCb (Large Hadron Collider Beauty) experiment and today is extensively used by several particle physics and biology communities. Current (FermiFermi Large Area Telescope -- LAT) and planned (Cherenkov Telescope Array -- CTA) new generation astrophysical/cosmological experiments, with very large processing and storage needs, are currently investigating the usability of DIRAC in this context. Each of these use cases has some peculiarities: FermiFermi-LAT will interface DIRAC to its own workflow system to allow the access to the grid resources, while CTA is using DIRAC as workflow management system for Monte Carlo production and analysis on the grid. We describe the prototype effort that we lead toward deploying a DIRAC solution for some aspects of FermiFermi-LAT and CTA needs.Comment: proceedings to CHEP 2013 conference : http://www.chep2013.org

    Instance nationale et multi-communauté de DIRAC pour France Grilles

    No full text
    DIRAC [DIRAC] [TSA-08] is a software framework for building distributed computing systems. It was primarily designed forthe needs of the LHCb [LHCb] Collaboration, and is now used by many other communities within EGI [EGI] as a primary wayof accessing grid resources. In France, dedicated instances of the service have been deployed in different locations toanswer specific needs. Building upon this existing expertise, France Grilles [FG] initiated last year a project to deploy anational, multi-community instance in order to share expertise and provide a consistent high-quality service. After describingDIRAC main aims and functionalities, this paper presents the motivations for such a project, as well as the wholeorganizational and technical process that led to the establishment of a production instance that already serves 13communities: astro.vo.eu-egee.org, biomed, esr, euasia, gilda, glast.org, prod.vo.eu-eela.eu, superbvo.org,vo.formation.idgrilles.fr, vo.france-asia.org, vo.france-grilles.fr, vo.msfg.fr and vo.mcia.fr

    Parallel processing of radio signals and detector arrays in CORSIKA 8

    Get PDF
    This contribution describes some recent advances in the parallelization of the generation and processing of radio signals emitted by particle showers in CORSIKA 8. CORSIKA 8 is a Monte Carlo simulation framework for modeling ultra-high energy particle cascades in astroparticle physics. The aspects associated with the generation and processing of radio signals in antennas arrays are reviewed, focusing on the key design opportunities and constraints for deployment of multiple threads on such calculations. The audience is also introduced to Gyges, a lightweight, header-only and flexible multithread self-adaptive scheduler written compliant with C++17 and C++20, which is used to distribute and manage the worker computer threads during the parallel calculations. Finally, performance and scalability measurements are provided and the integration into CORSIKA 8 is commented
    corecore