169 research outputs found
Uncertainty propagation for flood forecasting in the Alps: different views and impacts from MAP D-PHASE
D-PHASE was a Forecast Demonstration Project
of theWorldWeather Research Programme (WWRP) related
to the Mesoscale Alpine Programme (MAP). Its goal was to
demonstrate the reliability and quality of operational forecasting
of orographically influenced (determined) precipitation
in the Alps and its consequences on the distribution of
run-off characteristics. A special focus was, of course, on
heavy-precipitation events.
The D-PHASE Operations Period (DOP) ran from June
to November 2007, during which an end-to-end forecasting
system was operated covering many individual catchments
in the Alps, with their water authorities, civil protection organizations
or other end users. The forecasting system’s core
piece was a Visualization Platform where precipitation and
flood warnings from some 30 atmospheric and 7 hydrological
models (both deterministic and probabilistic) and corresponding
model fields were displayed in uniform and comparable
formats. Also, meteograms, nowcasting information
and end user communication was made available to all the
forecasters, users and end users. D-PHASE information was
assessed and used by some 50 different groups ranging from
atmospheric forecasters to civil protection authorities or water
management bodies.
In the present contribution, D-PHASE is briefly presented
along with its outstanding scientific results and, in particular,
the lessons learnt with respect to uncertainty propagation. A
focus is thereby on the transfer of ensemble prediction information
into the hydrological community and its use with
respect to other aspects of societal impact. Objective verification
of forecast quality is contrasted to subjective quality
assessments during the project (end user workshops, questionnaires) and some general conclusions concerning forecast
demonstration projects are drawn
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Optimization of atmospheric plasma treatment of LDPE films: Influence on adhesive properties and ageing behavior
One of the major disadvantages of low density polyethylene (LDPE) films is their poor adhesive properties. Therefore, LDPE films have been treated with atmospheric pressure air plasma in order to improve their surface properties. So as to simulate the possible conditions in an industrial process, the samples have been treated with two different sample distances (6 and 10 mm), and treatment rates between 100 and 1000 mm s-1. The different sample distances are the distance of the sample from the plasma source. The variation of the surface properties and adhesion characteristics of the films were investigated for different aging times after plasma exposure (up to 21 days) using contact angle measurement, atomic force microscopy, weight loss measurements and shear test. Results show that the treatment increases the polar component () and these changes improve adhesive properties of the material. After the twenty-first day, the ageing process causes a decrease of wettability and adhesive properties of the LDPE films (up to 60%).Fombuena Borrás, V.; GarcĂa Sanoguera, D.; Sánchez Nacher, L.; Balart Gimeno, RA.; Boronat Vitoria, T. (2014). Optimization of atmospheric plasma treatment of LDPE films: Influence on adhesive properties and ageing behavior. Journal of Adhesion Science and Technology. 28(1):97-113. doi:10.1080/01694243.2013.847045S97113281Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. doi:10.1016/j.jhazmat.2007.06.076Friedman, M., & Walsh, G. (2002). High performance films: Review of new materials and trends. Polymer Engineering & Science, 42(8), 1756-1788. doi:10.1002/pen.11069Wiles, D. M., & Scott, G. (2006). Polyolefins with controlled environmental degradability. Polymer Degradation and Stability, 91(7), 1581-1592. doi:10.1016/j.polymdegradstab.2005.09.010Gao, J., Lei, J., Li, Q., & Ye, S. (2004). Functionalized low-density polyethylene via a novel photografting method and its adhesion properties. Journal of Adhesion Science and Technology, 18(2), 195-203. doi:10.1163/156856104772759403Shenton, M. J., Lovell-Hoare, M. C., & Stevens, G. C. (2001). Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D: Applied Physics, 34(18), 2754-2760. doi:10.1088/0022-3727/34/18/307Belgacem, M. N., Salon-Brochier, M. C., Krouit, M., & Bras, J. (2011). Recent Advances in Surface Chemical Modification of Cellulose Fibres. Journal of Adhesion Science and Technology, 25(6-7), 661-684. doi:10.1163/016942410x525867Friedrich, J., Unger, W., & Lippitz, A. (1995). Plasma modification of polymer surfaces. Macromolecular Symposia, 100(1), 111-115. doi:10.1002/masy.19951000118Ladizesky, N. H., & Ward, I. M. (1989). The adhesion behaviour of high modulus polyethylene fibres following plasma and chemical treatment. Journal of Materials Science, 24(10), 3763-3773. doi:10.1007/bf02385768Nardin, M., & Ward, I. M. (1987). Influence of surface treatment on adhesion of polyethylene fibres. Materials Science and Technology, 3(10), 814-826. doi:10.1179/mst.1987.3.10.814Villagra Di Carlo, B., Gottifredi, J. C., & Habert, A. C. (2010). Synthesis and characterization of composite membrane by deposition of acrylic acid plasma polymer onto pre-treated polyethersulfone support. Journal of Materials Science, 46(6), 1850-1856. doi:10.1007/s10853-010-5012-4Matsunaga, M., & Whitney, P. J. (2000). Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polymer Degradation and Stability, 70(3), 325-332. doi:10.1016/s0141-3910(00)00105-1Novák, I., Pollák, V., & Chodák, I. (2006). Study of Surface Properties of Polyolefins Modified by Corona Discharge Plasma. Plasma Processes and Polymers, 3(4-5), 355-364. doi:10.1002/ppap.200500163Arpagaus, C., Rossi, A., & Rudolf von Rohr, P. (2005). Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor – process, wettability improvement and ageing effects. Applied Surface Science, 252(5), 1581-1595. doi:10.1016/j.apsusc.2005.02.099Morra, M., Occhiello, E., Marola, R., Garbassi, F., Humphrey, P., & Johnson, D. (1990). On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 137(1), 11-24. doi:10.1016/0021-9797(90)90038-pKim, K. S., Ryu, C. M., Park, C. S., Sur, G. S., & Park, C. E. (2003). Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer, 44(20), 6287-6295. doi:10.1016/s0032-3861(03)00674-8Kim, S. H., Ha, H. J., Ko, Y. K., Yoon, S. J., Rhee, J. M., Kim, M. S., … Khang, G. (2007). Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 18(5), 609-622. doi:10.1163/156856207780852514Borcia, G., Anderson, C. A., & Brown, N. M. D. (2004). The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Applied Surface Science, 221(1-4), 203-214. doi:10.1016/s0169-4332(03)00879-1Pascual, M., Calvo, O., Sanchez-Nácher, L., Bonet, M. A., Garcia-Sanoguera, D., & Balart, R. (2009). Optimization of adhesive joints of low density polyethylene (LDPE) composite laminates with polyolefin foam using corona discharge plasma. Journal of Applied Polymer Science, 114(5), 2971-2977. doi:10.1002/app.30906Encinas, N., DĂaz-Benito, B., Abenojar, J., & MartĂnez, M. A. (2010). Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surface and Coatings Technology, 205(2), 396-402. doi:10.1016/j.surfcoat.2010.06.069Takke, V., Behary, N., Perwuelz, A., & Campagne, C. (2009). Studies on the atmospheric air-plasma treatment of PET (polyethylene terephtalate) woven fabrics: Effect of process parameters and of aging. Journal of Applied Polymer Science, 114(1), 348-357. doi:10.1002/app.30618Awaja, F., Gilbert, M., Kelly, G., Fox, B., & Pigram, P. J. (2009). Adhesion of polymers. Progress in Polymer Science, 34(9), 948-968. doi:10.1016/j.progpolymsci.2009.04.007Garcia, D., Sanchez, L., Fenollar, O., Lopez, R., & Balart, R. (2008). Modification of polypropylene surface by CH4–O2 low-pressure plasma to improve wettability. Journal of Materials Science, 43(10), 3466-3473. doi:10.1007/s10853-007-2322-2Guimond, S., & Wertheimer, M. R. (2004). Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. Journal of Applied Polymer Science, 94(3), 1291-1303. doi:10.1002/app.21134Pascual, M., Balart, R., Sánchez, L., Fenollar, O., & Calvo, O. (2008). Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. Journal of Materials Science, 43(14), 4901-4909. doi:10.1007/s10853-008-2712-0Sanchis, R., Fenollar, O., GarcĂa, D., Sánchez, L., & Balart, R. (2008). Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. International Journal of Adhesion and Adhesives, 28(8), 445-451. doi:10.1016/j.ijadhadh.2008.04.002Fresnais, J., Chapel, J. P., Benyahia, L., & Poncin-Epaillard, F. (2009). Plasma-Treated Superhydrophobic Polyethylene Surfaces: Fabrication, Wetting and Dewetting Properties. Journal of Adhesion Science and Technology, 23(3), 447-467. doi:10.1163/156856108x370127Abenojar, J., Colera, I., MartĂnez, M. A., & Velasco, F. (2010). Study by XPS of an Atmospheric Plasma-Torch Treated Glass: Influence on Adhesion. Journal of Adhesion Science and Technology, 24(11-12), 1841-1854. doi:10.1163/016942410x507614Lommatzsch, U., Pasedag, D., Baalmann, A., Ellinghorst, G., & Wagner, H.-E. (2007). Atmospheric Pressure Plasma Jet Treatment of Polyethylene Surfaces for Adhesion Improvement. Plasma Processes and Polymers, 4(S1), S1041-S1045. doi:10.1002/ppap.200732402Balu, B., Berry, A. D., Patel, K. T., Breedveld, V., & Hess, D. W. (2011). Directional Mobility and Adhesion of Water Drops on Patterned Superhydrophobic Surfaces. Journal of Adhesion Science and Technology, 25(6-7), 627-642. doi:10.1163/016942410x525849Bhattacharya, S., Singh, R. K., Mandal, S., Ghosh, A., Bok, S., Korampally, V., … Gangopadhyay, S. (2010). Plasma Modification of Polymer Surfaces and Their Utility in Building Biomedical Microdevices. Journal of Adhesion Science and Technology, 24(15-16), 2707-2739. doi:10.1163/016942410x511105Das, S., Neogi, S., Chainy, G. B. N., & Guha, S. K. (2011). A Novel Two-Step Procedure for Plasma Surface Modification of Low-Density Polyethylene for Improved Drug Adhesion in Intra Uterine Devices (IUDs). Journal of Adhesion Science and Technology, 25(1-3), 151-167. doi:10.1163/016942410x503285Schulz, U., Munzert, P., & Kaiser, N. (2010). Plasma Surface Modification of PMMA for Optical Applications. Journal of Adhesion Science and Technology, 24(7), 1283-1289. doi:10.1163/016942409x12561252292026Silverstein, M. S., Breuer, O., & Dodiuk, H. (1994). Surface modification of UHMWPE fibers. Journal of Applied Polymer Science, 52(12), 1785-1795. doi:10.1002/app.1994.070521213Inagaki, N., Narushim, K., Tuchida, N., & Miyazaki, K. (2004). Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces. Journal of Polymer Science Part B: Polymer Physics, 42(20), 3727-3740. doi:10.1002/polb.20234Nakamatsu, J., Delgado-Aparicio, L. F., Da Silva, R., & Soberon, F. (1999). Ageing of plasma-treated poly(tetrafluoroethylene) surfaces. Journal of Adhesion Science and Technology, 13(7), 753-761. doi:10.1163/156856199x00983Yun, Y. I., Kim, K. S., Uhm, S.-J., Khatua, B. B., Cho, K., Kim, J. K., & Park, C. E. (2004). Aging behavior of oxygen plasma-treated polypropylene with different crystallinities. Journal of Adhesion Science and Technology, 18(11), 1279-1291. doi:10.1163/1568561041588200Morent, R., De Geyter, N., Leys, C., Gengembre, L., & Payen, E. (2007). Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology, 201(18), 7847-7854. doi:10.1016/j.surfcoat.2007.03.018Zhao, B., & Kwon, H. J. (2011). Adhesion of Polymers in Paper Products from the Macroscopic to Molecular Level — An Overview. Journal of Adhesion Science and Technology, 25(6-7), 557-579. doi:10.1163/016942410x52582
Jets and energy flow in photon-proton collisions at HERA
Properties of the hadronic final state in photoproduction events with large transverse energy are studied at the electron-proton collider HERA. Distributions of the transverse energy, jets and underlying event energy are compared to \overline{p}p data and QCD calculations. The comparisons show that the \gamma p events can be consistently described by QCD models including -- in addition to the primary hard scattering process -- interactions between the two beam remnants. The differential jet cross sections d\sigma/dE_T^{jet} and d\sigma/d\eta^{jet} are measured
- …