93 research outputs found

    Cancer and renal insufficiency results of the BIRMA study

    Get PDF
    Background: Half of anticancer drugs are predominantly excreted in urine. Dosage adjustment in renal insufficiency (RI) is, therefore, a crucial issue. Moreover, patients with abnormal renal function are at high risk for drug-induced nephrotoxicity. The Belgian Renal Insufficiency and Anticancer Medications (BIRMA) study investigated the prevalence of RI in cancer patients, and the profile/dosing of anticancer drugs prescribed. Methods:Primary end point: to estimate the prevalence of abnormal glomerular filtration rate (GFR; estimated with the abbreviated Modification of Diet in Renal Disease formula) and RI in cancer patient. Secondary end point: to describe the profile of anticancer drugs prescribed (dose reduction/nephrotoxicity). Data were collected for patients presenting at one of the seven Belgian BIRMA centres in March 2006. Results: A total of 1218 patients were included. The prevalence of elevated SCR (1.2 mg per 100 ml) was 14.9%, but 64.0% had a GFR90 ml min 1 per 1.73 m 2. In all, 78.6% of treated patients (n1087) were receiving at least one drug needing dosage adjustment and 78.1% received at least one nephrotoxic drug. In all, 56.5% of RI patients receiving chemotherapy requiring dose reduction in case of RI did not receive dose adjustment. Conclusions: The RI is highly frequent in cancer patients. In all, 80% of the patients receive potentially nephrotoxic drugs and/or for which dosage must be adjusted in RI. Oncologists should check the appropriate dose of chemotherapeutic drugs in relation to renal function before prescribing. © 2010 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A Monte Carlo Simulation Approach for Beta‐Lactam Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy

    Full text link
    Cefepime, ceftazidime, and piperacillin/tazobactam are commonly used beta‐lactam antibiotics in the critical care setting. For critically ill patients receiving prolonged intermittent renal replacement therapy (PIRRT), limited pharmacokinetic data are available to inform clinicians on the dosing of these agents. Monte Carlo simulations (MCS) can be used to guide drug dosing when pharmacokinetic trials are not feasible. For each antibiotic, MCS using previously published pharmacokinetic data derived from critically ill patients was used to evaluate multiple dosing regimens in 4 different prolonged intermittent renal replacement therapy effluent rates and prolonged intermittent renal replacement therapy duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis and hemofiltration modes). Antibiotic regimens were also modeled depending on whether drugs were administered during or well before prolonged intermittent renal replacement therapy therapy commenced. The probability of target attainment (PTA) was calculated using each antibiotic’s pharmacodynamic target during the first 48 hours of therapy. Optimal doses were defined as the smallest daily dose achieving ≥90% probability of target attainment in all prolonged intermittent renal replacement therapy effluent and duration combinations. Cefepime 1 g every 6 hours following a 2 g loading dose, ceftazidime 2 g every 12 hours, and piperacillin/tazobactam 4.5 g every 6 hours attained the desired pharmacodynamic target in ≥90% of modeled prolonged intermittent renal replacement therapy patients. Alternatively, if an every 6‐hours cefepime regimen is not desired, the cefepime 2 g pre‐prolonged intermittent renal replacement therapy and 3 g post‐prolonged intermittent renal replacement therapy regimen also met targets. For ceftazidime, 1 g every 6 hours or 3 g continuous infusion following a 2 g loading dose also met targets. These recommended doses provide simple regimens that are likely to achieve the pharmacodynamics target while yielding the least overall drug exposure, which should result in lower toxicity rates. These findings should be validated in the clinical setting.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145557/1/jcph1137.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145557/2/jcph1137_am.pd
    corecore