579 research outputs found

    Role of THBS1, WHSC1, ADAMTS1 and RBFOX2 genes in the radiation-induced Dna double strand break repair in Hela tumor cell line

    Get PDF
    It is well known that inter-individual differences of radiosensitivity have genetic causes, such as variations in the level of DNA or expression of DNA repair genes. However, differentially expressed genes which could lead to inter-individual differences in the level of DNA damage remain largely unidentified. In our study we have induced knock-out of THBS1, WHSC1, ADAMTS1 and RBFOX2 genes in HeLa cell line to clarify the effects of these genes on DNA repair and radiosensitivity

    Low-grade inflammation as a predictor of antidepressant and anti- inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium

    Get PDF
    Terapia antiinflamatoria; Terapia antidepresiva; InflamaciónAnti-inflammatory therapy; Antidepressant therapy; InflammationTeràpia antiinflamatòria; Teràpia antidepressiva; InflamacióLow-grade inflammation plays a role not only in the pathogenesis of major depressive disorder (MDD) but probably also in the poor responsiveness to regular antidepressants. There are also indications that anti-inflammatory agents improve the outcomes of antidepressants. Aim: To study whether the presence of low-grade inflammation predicts the outcome of antidepressants, anti-inflammatory agents, or combinations thereof. Methods: We carried out a systematic review of the literature on the prediction capability of the serum levels of inflammatory compounds and/or the inflammatory state of circulating leukocytes for the outcome of antidepressant/anti-inflammatory treatment in MDD. We compared outcomes of the review with original data (collected in two limited trials carried out in the EU project MOODINFLAME) on the prediction capability of the inflammatory state of monocytes (as measured by inflammatory gene expression) for the outcome of venlafaxine, imipramine, or sertraline treatment, the latter with and without celecoxib added. Results: Collectively, the literature and original data showed that: 1) raised serum levels of pro-inflammatory compounds (in particular of CRP/IL-6) characterize an inflammatory form of MDD with poor responsiveness to predominately serotonergic agents, but a better responsiveness to antidepressant regimens with a) (add-on) noradrenergic, dopaminergic, or glutamatergic action or b) (add-on) anti-inflammatory agents such as infliximab, minocycline, or eicosapentaenoic acid, showing—next to anti-inflammatory—dopaminergic or lipid corrective action; 2) these successful anti-inflammatory (add-on) agents, when used in patients with low serum levels of CRP/IL-6, decreased response rates in comparison to placebo. Add-on aspirin, in contrast, improved responsiveness in such “non-inflammatory” patients; 3) patients with increased inflammatory gene expression in circulating leukocytes had a poor responsiveness to serotonergic/noradrenergic agents. Conclusions: The presence of inflammation in patients with MDD heralds a poor outcome of first-line antidepressant therapies. Immediate step-ups to dopaminergic or glutamatergic regimens or to (add-on) anti-inflammatory agents are most likely indicated. However, at present, insufficient data exist to design protocols with reliable inflammation parameter cutoff points to guide such therapies, the more since detrimental outcomes are possible of anti-inflammatory agents in “non-inflamed” patients.This study was financially supported by the EU via the MOODINFLAME project (EU-FP7-HEALTH-F2-2008-222963), the PSYCHAID (EU-FP7-PEOPLE-2009-IAPP-MarieCurie-286334), and the MOODSTRATIFICATION project (H2020-EU. 3.1.1., GA754740). NM and GA were additionally supported by the foundation "Immunitat und Seele." The funders had no role in study design, data collection, analysis and interpretation of data, the writing of the report, and the decision to submit the paper for publication

    Molecular serum signature of treatment resistant depression

    Get PDF
    Rationale: A substantial number of patients suffering from major depressive disorder (MDD) do not respond to multiple trials of anti-depressants, develop a chronic course of disease and become treatment resistant. Most of the studies investigating molecular changes in treatment-resistant depression (TRD) have only examined a limited number of molecules and genes. Consequently, biomarkers associated with TRD are still lacking. Objectives: This study aimed to use recently advanced high-throughput proteomic platforms to identify peripheral biomarkers of TRD defined by two staging models, the Thase and Rush staging model (TRM) and the Maudsley Staging Model (MSM). Methods: Serum collected from an inpatient cohort of 65 individuals suffering from MDD was analysed using two different mass spectrometric-based platforms, label-free liquid chromatography mass spectrometry (LC-MSE) and selective reaction monitoring (SRM), as well as a multiplex bead based assay. Results: In the LC-MSE analysis, proteins involved in the acute phase response and complement activation and coagulation were significantly different between the staging groups in both models. In the multiplex bead-based assay analysis TNF-α levels (log(odds) = −4.95, p = 0.045) were significantly different in the TRM comparison. Using SRM, significant changes of three apolipoproteins A–I (β = 0.029, p = 0.035), M (β = −0.017, p = 0.009) and F (β = −0.031, p = 0.024) were associated with the TRM but not the MSM. Conclusion: Overall, our findings suggest that proteins, which are involved in immune and complement activation, may represent potential biomarkers that could be used by clinicians to identify high-risk patients. Nevertheless, given that the molecular changes between the staging groups were subtle, the results need to be interpreted cautiously

    Human Fear Conditioning and Extinction in Neuroimaging: A Systematic Review

    Get PDF
    Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending o

    Impact of Working Memory Load on fMRI Resting State Pattern in Subsequent Resting Phases

    Get PDF
    BACKGROUND: The default-mode network (DMN) is a functional network with increasing relevance for psychiatric research, characterized by increased activation at rest and decreased activation during task performance. The degree of DMN deactivation during a cognitively demanding task depends on its difficulty. However, the relation of hemodynamic responses in the resting phase after a preceding cognitive challenge remains relatively unexplored. We test the hypothesis that the degree of activation of the DMN following cognitive challenge is influenced by the cognitive load of a preceding working-memory task. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-five healthy subjects were investigated with functional MRI at 3 Tesla while performing a working-memory task with embedded short resting phases. Data were decomposed into statistically independent spatio-temporal components using Tensor Independent Component Analysis (TICA). The DMN was selected using a template-matching procedure. The spatial map contained rest-related activations in the medial frontal cortex, ventral anterior and posterior cingulate cortex. The time course of the DMN revealed increased activation at rest after 1-back and 2-back blocks compared to the activation after a 0-back block. CONCLUSION/SIGNIFICANCE: We present evidence that a cognitively challenging working-memory task is followed by greater activation of the DMN than a simple letter-matching task. This might be interpreted as a functional correlate of self-evaluation and reflection of the preceding task or as relocation of cerebral resources representing recovery from high cognitive demands. This finding is highly relevant for neuroimaging studies which include resting phases in cognitive tasks as stable baseline conditions. Further studies investigating the DMN should take possible interactions of tasks and subsequent resting phases into account

    Karanfil ve yasemin

    Get PDF
    Mehmet Rauf'un Tanin'de tefrika edilen Karanfil ve Yasemin adlı roman

    Altered top-down and bottom-up processing of fear conditioning in panic disorder with agoraphobia

    Get PDF
    Background: Although several neurophysiological models have been proposed for panic disorder with agoraphobia (PD/AG), there is limited evidence from functional magnetic resonance imaging (fMRI) studies on key neural networks in PD/AG. Fear conditioning has been proposed to represent a central pathway for the development and maintenance of this disorder; however, its neural substrates remain elusive. The present study aimed to investigate the neural correlates of fear conditioning in PD/AG patients. Method: The blood oxygen level-dependent (BOLD) response was measured using fMRI during a fear conditioning task. Indicators of differential conditioning, simple conditioning and safety signal processing were investigated in 60 PD/AG patients and 60 matched healthy controls. Results: Differential conditioning was associated with enhanced activation of the bilateral dorsal inferior frontal gyrus (IFG) whereas simple conditioning and safety signal processing were related to increased midbrain activation in PD/AG patients versus controls. Anxiety sensitivity was associated positively with the magnitude of midbrain activation. Conclusions: The results suggest changes in top-down and bottom-up processes during fear conditioning in PD/AG that can be interpreted within a neural framework of defensive reactions mediating threat through distal (forebrain) versus proximal (midbrain) brain structures. Evidence is accumulating that this network plays a key role in the aetiopathogenesis of panic disorder
    corecore