21 research outputs found

    A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila

    Get PDF
    Background Production of carp dominates world aquaculture. More than 1.1 million tonnes of rohu carp, Labeo rohita (Hamilton), were produced in 2010. Aeromonas hydrophila is a bacterial pathogen causing aeromoniasis in rohu, and is a major problem for carp production worldwide. There is a need to better understand the genetic mechanisms affecting resistance to this disease, and to develop tools that can be used with selective breeding to improve resistance. Here we use a 6 K SNP array to genotype 21 full-sibling families of L. rohita that were experimentally challenged intra-peritoneally with a virulent strain of A. hydrophila to scan the genome for quantitative trait loci associated with disease resistance. Results In all, 3193 SNPs were found to be informative and were used to create a linkage map and to scan for QTL affecting resistance to A. hydrophila. The linkage map consisted of 25 linkage groups, corresponding to the number of haploid chromosomes in L. rohita. Male and female linkage maps were similar in terms of order, coverage (1384 and 1393 cM, respectively) and average interval distances (1.32 and 1.35 cM, respectively). Forty-one percent of the SNPs were annotated with gene identity using BLAST (cut off E-score of 0.001). Twenty-one SNPs mapping to ten linkage groups showed significant associations with the traits hours of survival and dead or alive (P <0.05 after Bonferroni correction). Of the SNPs showing significant or suggestive associations with the traits, several were homologous to genes of known immune function or were in close linkage to such genes. Genes of interest included heat shock proteins (70, 60, 105 and “small heat shock proteins”), mucin (5b precursor and 2), lectin (receptor and CD22), tributyltin-binding protein, major histocompatibility loci (I and II), complement protein component c7-1, perforin 1, ubiquitin (ligase, factor e4b isoform 2 and conjugation enzyme e2 c), proteasome subunit, T-cell antigen receptor and lymphocyte specific protein tyrosine kinase. Conclusions A panel of markers has been identified that will be validated for use with both genomic and marker-assisted selection to improve resistance of L. rohita to A. hydrophila

    Evidence of unidirectional gene flow in a fragmented population of Salmo trutta L

    Get PDF
    Selection, genetic drift, and gene flow affect genetic variation within populations and genetic differences among populations. Both drift and selection tend to decrease variation within populations and increase differences among populations, whereas gene flow increases variation within populations but leads to populations being related. In brown trout (Salmo trutta L.), the most important factor in population fragmentation is disrupted river-segment connectivity. The main goal of the study was to use genetic analysis to estimate the level of gene flow among resident and migratory brown trout in potential hybridization areas located downstream of impassable barriers in one river basin in the southern Baltic Sea region. First, spawning redds were counted in the upper river basin downstream of impassable barriers. Next, samples were collected from juveniles in spawning areas located downstream of barriers and from adults downstream and upstream of barriers. Subsequently, genetic analysis was performed using a panel of 13 microsatellite loci and the Salmo trutta 5 K SNP microarray. The genetic differentiation estimated between the resident form sampled upstream of the barriers and the anadromous specimens downstream of the barriers was high and significant. Analysis revealed that gene flow occurred between the two forms in the hybridization zone investigated and that isolated resident specimens shared spawning grounds with sea trout downstream of the barriers. The brown trout population from the river system investigated was slightly, internally diversified in the area accessible to migration. Simultaneously, the isolated part of the population was very different from that in the rest of the basin. The spawning areas of the anadromous form located downstream of the barriers were in a hybridization zone and gene flow was confirmed to be unidirectional. Although they constituted a small percentage, the genotypes typical upstream of the barriers were admixed downstream of them. The lack of genotypes noted upstream of the barriers among adult anadromous individuals might indicate that migrants of upstream origin and hybrids preferred residency
    corecore