155 research outputs found

    Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response - a double-blind PET study in schizophrenia

    Get PDF
    Blockade of dopamine D2 receptors remains a common feature of all antipsychotics. It has been hypothesized that the extrastriatal (cortical, thalamic) dopamine D2 receptors may be more critical to antipsychotic response than the striatal dopamine D2 receptors. This is the first double-blind controlled study to examine the relationship between striatal and extrastriatal D2 occupancy and clinical effects. Fourteen patients with recent onset psychosis were assigned to low or high doses of risperidone (1 mg vs 4 mg/day) or olanzapine (2.5 mg vs 15 mg/day) in order to achieve a broad range of D2 occupancy levels across subjects. Clinical response, side effects, striatal ([11C]-raclopride-positron emission tomography (PET)), and extrastriatal ([11C]-FLB 457-PET) D2 receptors were evaluated after treatment. The measured D2 occupancies ranged from 50 to 92% in striatal and 4 to 95% in the different extrastriatal (frontal, temporal, thalamic) regions. Striatal and extrastriatal occupancies were correlated with dose, drug plasma levels, and with each other. Striatal D2 occupancy predicted response in positive psychotic symptoms (r=0.62, p=0.01), but not for negative symptoms (r=0.2, p=0.5). Extrastriatal D2 occupancy did not predict response in positive or negative symptoms. The two subjects who experienced motor side effects had the highest striatal occupancies in the cohort. Striatal D2 blockade predicted antipsychotic response better than frontal, temporal, and thalamic occupancy. These results, when combined with the preclinical data implicating the mesolimbic striatum in antipsychotic response, suggest that dopamine D2 blockade within specific regions of the striatum may be most critical for ameliorating psychosis in schizophrenia.peer-reviewe

    Regulating and Deregulating the Public Utilities 1830-2010

    Get PDF
    History can provide invaluable insights into important issues of the economic and social regulation of utilities, and offer lessons towards future debates. But the history of utility regulation – which speaks of changing, diverse and complex experiences around the world – was, unfortunately, sidelined or marginalised when economists and policymakers enthusiastically embraced the question of how to reform the utilities from the 1970s. This paper provides an overview of the three, overarching, `waves' of utility regulation from the nineteenth century to the present, documenting how, when and why the ways in which the roles of the state, the market and firms altered over time. It then contextualises and explains the main contributions of each of the papers included in this special issue of Business History, which cover energy, communications, water, transportation and other urban infrastructure regulation, across Western Europe, the United States and Australia

    Addendum to ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis:Part 1 of 2-evidence base and standardized methods of imaging

    Get PDF
    There are 2 primary reasons for an addendum. The first is that the document reviewer list is being updated to include Dr Richard Cheng and Dr Roy John, who have critically reviewed the document, but were inadvertently not listed as reviewers. In addition, since the publication of this document and the introduction of approved therapies for transthyretin cardiac amyloidosis, the clinical use of bone tracer cardiac scintigraphy has been extended to populations with a lower prevalence of transthyretin cardiac amyloidosis. Numerous observations have raised concerns about (1) incorrect diagnosis of transthyretin cardiac amyloidosis based on 99mTc-pyrophosphate (PYP) planar imaging and heart-to-contralateral lung (H/CL) ratio without confirmation of diffuse myocardial uptake on single photon emission computed tomography (SPECT) imaging at some sites; (2) excess blood pool activity on the 1-hour planar and SPECT images being interpreted as positive scans; and (3) missed diagnosis of light chain amyloidosis, as serum-free light chain studies and serum and urine immunofixation electrophoresis studies may not be recommended in the 99mTc-PY P/-3,3-diphosphono-1,2-propanodicarboxylic acid/hydroxymethylene diphosphonate (99mTc-PYP/DPD/HMDP) report. Incorrect diagnosis leads to inappropriate therapy and worse patient outcomes. SPECT and planar imaging performed at 3-hour maximize specificity. 1 , 2 , 3 Additionally, technical parameters have been updated

    X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It's well recognized that X-linked inhibitor of apoptosis (XIAP) was the most potent caspase inhibitor and second mitochondria-derived activator of caspase (Smac) was the antagonist of XIAP. Experiments in vitro identified that down regulation of XIAP expression or applying Smac mimics could sensitize breast cancer cells to chemotherapeutics and promote apoptosis. However, expression status and biologic or prognostic significance of XIAP/Smac in breast invasive ductal carcinoma (IDC) were not clear. The present study aimed to investigate relationship among expression status of XIAP/Smac, apoptosis index (AI), clinicopathologic parameters and prognosis in IDC.</p> <p>Methods</p> <p>Immunohistochemistry and TUNEL experiment were performed to detect expression of XIAP, Smac, ER, PR, HER2 and AI in 102 cases of paraffin-embedded IDC samples respectively. Expression of XIAP/Smac were also detected in limited 8 cases of fresh IDC specimens with Western blot.</p> <p>Results</p> <p>Positive ratio and immunoscore of XIAP was markedly higher than Smac in IDC (<it>P </it>< 0.0001). It was noteworthy that 44 cases of IDC were positive in nuclear for XIAP, but none was for Smac. Expression status of Smac was more prevalent in HER2 positive group than negative group (<it>P </it>< 0.0001) and AI was positively correlated with HER2 protein expression (r<sub>s </sub>= 0.265, <it>P </it>= 0.017). The present study first revealed that XIAP positive nuclear labeling (XIAP-N), but not cytoplasmic staining (XIAP-C), was the apoptotic marker correlated significantly with patients' shortened overall survival (<it>P </it>= 0.039). Survival analysis demonstrated that XIAP-N was a new independent prognostic factor except for patient age and lymph node status.</p> <p>Conclusion</p> <p>Disturbed balance of expression between XIAP and Smac probably contributed to carcinogenesis and XIAP positive nuclear labeling was a new independent prognostic biomarker of breast IDC.</p

    Asenapine effects in animal models of psychosis and cognitive function

    Get PDF
    Asenapine, a novel psychopharmacologic agent in the development for schizophrenia and bipolar disorder, has high affinity for serotonergic, α-adrenergic, and dopaminergic receptors, suggesting potential for antipsychotic and cognitive-enhancing properties. The effects of asenapine in rat models of antipsychotic efficacy and cognition were examined and compared with those of olanzapine and risperidone. Amphetamine-stimulated locomotor activity (Amp-LMA; 1.0 or 3.0 mg/kg s.c.) and apomorphine-disrupted prepulse inhibition (Apo-PPI; 0.5 mg/kg s.c.) were used as tests for antipsychotic activity. Delayed non-match to place (DNMTP) and five-choice serial reaction (5-CSR) tasks were used to assess short-term spatial memory and attention, respectively. Asenapine doses varied across tasks: Amp-LMA (0.01–0.3 mg/kg s.c.), Apo-PPI (0.001–0.3 mg/kg s.c.), DNMTP (0.01–0.1 mg/kg s.c.), and 5-CSR (0.003–0.3 mg/kg s.c.). Asenapine was highly potent (active at 0.03 mg/kg) in the Amp-LMA and Apo-PPI assays. DNMTP or 5-CSR performance was not improved by asenapine, olanzapine, or risperidone. All agents (P &lt; 0.01) reduced DNMTP accuracy at short delays; post hoc analyses revealed that only 0.1 mg/kg asenapine and 0.3 mg/kg risperidone differed from vehicle. All active agents (asenapine, 0.3 mg/kg; olanzapine, 0.03–0.3 mg/kg; and risperidone, 0.01–0.1 mg/kg) significantly impaired 5-CSR accuracy (P &lt; 0.05). Asenapine has potent antidopaminergic properties that are predictive of antipsychotic efficacy. Asenapine, like risperidone and olanzapine, did not improve cognition in normal rats. Rather, at doses greater than those required for antipsychotic activity, asenapine impaired cognitive performance due to disturbance of motor function, an effect also observed with olanzapine and risperidone

    Effect of apomorphine on cognitive performance and sensorimotor gating in humans

    Get PDF
    Contains fulltext : 88792.pdf (publisher's version ) (Closed access)INTRODUCTION: Dysfunction of brain dopamine systems is involved in various neuropsychiatric disorders. Challenge studies with dopamine receptor agonists have been performed to assess dopamine receptor functioning, classically using the release of growth hormone (GH) from the hindbrain as primary outcome measure. The objective of the current study was to assess dopamine receptor functioning at the forebrain level. METHODS: Fifteen healthy male volunteers received apomorphine sublingually (2 mg), subcutaneously (0.005 mg/kg), and placebo in a balanced, double-blind, cross-over design. Outcome measures were plasma GH levels, performance on an AX continuous performance test, and prepulse inhibition of the acoustic startle. The relation between central outcome measures and apomorphine levels observed in plasma and calculated in the brain was modeled using a two-compartmental pharmacokinetic-pharmacodynamic analysis. RESULTS: After administration of apomorphine, plasma GH increased and performance on the AX continuous performance test deteriorated, particularly in participants with low baseline performance. Apomorphine disrupted prepulse inhibition (PPI) on high-intensity (85 dB) prepulse trials and improved PPI on low intensity (75 dB) prepulse trials, particularly in participants with low baseline PPI. High cognitive performance at baseline was associated with reduced baseline sensorimotor gating. Neurophysiological measures correlated best with calculated brain apomorphine levels after subcutaneous administration. CONCLUSION: The apomorphine challenge test appears a useful tool to assess dopamine receptor functioning at the forebrain level. Modulation of the effect of apomorphine by baseline performance levels may be explained by an inverted U-shape relation between prefrontal dopamine functioning and cognitive performance, and mesolimbic dopamine functioning and sensorimotor gating. Future apomorphine challenge tests preferentially use multiple outcome measures, after subcutaneous administration of apomorphine.1 januari 201
    corecore