24,318 research outputs found

    Compact QED under scrutiny: it's first order

    Get PDF
    We report new results from our finite size scaling analysis of 4d compact pure U(1) gauge theory with Wilson action. Investigating several cumulants of the plaquette energy within the Borgs-Kotecky finite size scaling scheme we find strong evidence for a first-order phase transition and present a high precision value for the critical coupling in the thermodynamic limit.Comment: Lattice2002(Spin

    Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

    Full text link
    It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock type singularities are presented.Comment: 19 page

    Thermodynamic phase transitions and shock singularities

    Full text link
    We show that under rather general assumptions on the form of the entropy function, the energy balance equation for a system in thermodynamic equilibrium is equivalent to a set of nonlinear equations of hydrodynamic type. This set of equations is integrable via the method of the characteristics and it provides the equation of state for the gas. The shock wave catastrophe set identifies the phase transition. A family of explicitly solvable models of non-hydrodynamic type such as the classical plasma and the ideal Bose gas are also discussed.Comment: revised version, 18 pages, 6 figure

    Effective Kinetic Theory for High Temperature Gauge Theories

    Full text link
    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature TT) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. The appropriate Boltzmann equations depend on effective scattering rates for various types of collisions that can occur in the plasma. The resulting effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations. This includes transport coefficients (viscosities and diffusion constants) and energy loss rates. We show how to formulate effective Boltzmann equations which will be adequate to compute such observables to leading order in the running coupling g(T)g(T) of high-temperature gauge theories [and all orders in 1/log⁡g(T)−11/\log g(T)^{-1}]. As previously proposed in the literature, a leading-order treatment requires including both 2222 particle scattering processes as well as effective ``1212'' collinear splitting processes in the Boltzmann equations. The latter account for nearly collinear bremsstrahlung and pair production/annihilation processes which take place in the presence of fluctuations in the background gauge field. Our effective kinetic theory is applicable not only to near-equilibrium systems (relevant for the calculation of transport coefficients), but also to highly non-equilibrium situations, provided some simple conditions on distribution functions are satisfied.Comment: 40 pages, new subsection on soft gauge field instabilities adde

    Measurement of temperature profiles in hot gases and flames

    Get PDF
    Computer program was written for calculation of molecular radiative transfer from hot gases. Shape of temperature profile was approximated in terms of simple geometric forms so profile could be characterized in terms of few parameters. Parameters were adjusted in calculations using appropriate radiative-transfer expression until best fit was obtained with observed spectra

    Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow

    Get PDF
    We investigate the dynamics of the two-dimensional periodic Kolmogorov flow of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct numerical simulations. Above a critical Weissenberg number the flow displays a transition from stationary to randomly fluctuating states, via periodic ones. The increasing complexity of the flow in both time and space at progressively higher values of elasticity accompanies the establishment of mixing features. The peculiar dynamical behavior observed in the simulations is found to be related to the appearance of filamental propagating patterns, which develop even in the limit of very small inertial non-linearities, thanks to the feedback of elastic forces on the flow.Comment: 10 pages, 14 figure

    Unitarily localizable entanglement of Gaussian states

    Full text link
    We consider generic m×nm\times n-mode bipartitions of continuous variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)(m+n)-mode Gaussian states invariant under local mode permutations on the mm-mode and nn-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n−2m+n-2 uncorrelated single-mode states. The entanglement between the mm-mode and the nn-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)(m + n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.Comment: 10 pages, 2 figure

    Comment on "c-axis Josephson tunneling in Dx2−y2D_{x^2-y^2}-wave superconductors''

    Full text link
    This comment points out that the recent paper by Maki and Haas [Phys. Rev. B {\bf 67}, 020510 (2003)] is completely wrong.Comment: 1 page, submittted to Phys. Rev.

    Global Theory of Quantum Boundary Conditions and Topology Change

    Full text link
    We analyze the global theory of boundary conditions for a constrained quantum system with classical configuration space a compact Riemannian manifold MM with regular boundary Γ=∂M\Gamma=\partial M. The space \CM of self-adjoint extensions of the covariant Laplacian on MM is shown to have interesting geometrical and topological properties which are related to the different topological closures of MM. In this sense, the change of topology of MM is connected with the non-trivial structure of \CM. The space \CM itself can be identified with the unitary group \CU(L^2(\Gamma,\C^N)) of the Hilbert space of boundary data L^2(\Gamma,\C^N). A particularly interesting family of boundary conditions, identified as the set of unitary operators which are singular under the Cayley transform, \CC_-\cap \CC_+ (the Cayley manifold), turns out to play a relevant role in topology change phenomena. The singularity of the Cayley transform implies that some energy levels, usually associated with edge states, acquire an infinity energy when by an adiabatic change the boundary condition reaches the Cayley submanifold \CC_-. In this sense topological transitions require an infinite amount of quantum energy to occur, although the description of the topological transition in the space \CM is smooth. This fact has relevant implications in string theory for possible scenarios with joint descriptions of open and closed strings. In the particular case of elliptic self--adjoint boundary conditions, the space \CC_- can be identified with a Lagrangian submanifold of the infinite dimensional Grassmannian. The corresponding Cayley manifold \CC_- is dual of the Maslov class of \CM.Comment: 29 pages, 2 figures, harvma
    • 

    corecore