280 research outputs found
Harvesting graphics power for MD simulations
We discuss an implementation of molecular dynamics (MD) simulations on a
graphic processing unit (GPU) in the NVIDIA CUDA language. We tested our code
on a modern GPU, the NVIDIA GeForce 8800 GTX. Results for two MD algorithms
suitable for short-ranged and long-ranged interactions, and a congruential
shift random number generator are presented. The performance of the GPU's is
compared to their main processor counterpart. We achieve speedups of up to 80,
40 and 150 fold, respectively. With newest generation of GPU's one can run
standard MD simulations at 10^7 flops/$.Comment: 12 pages, 5 figures. Submitted to Mol. Si
Estimation of Airborne Vapor Concentrations of Oil Dispersants COREXIT™ EC9527A and EC9500A, Volatile Components Associated with the Deepwater Horizon Oil Spill Response and Clean-up Operations
The Deepwater Horizon (DWH) drilling unit explosion above the Macondo oil well on 20 April 2010 caused the release of approximately 4.9 million barrels (779 million L) of oil into the Gulf of Mexico. As part of a larger spill response and clean-up effort, approximately 1.84 million gallons (6.81 million L) of chemical dispersants COREXIT™ EC9500A and COREXIT™ EC9527A were applied to the resultant oil slicks through spraying on the water surface by plane and by vessel and through injection at the release source near the seabed. The GuLF STUDY is investigating the health effects of workers involved in the oil spill response and clean-up after the DWH explosion, and estimates of possible exposure to chemical dispersants were needed. Exposures were estimated to the volatile components of COREXIT™ EC9500A [petroleum distillates, hydrotreated light, and propylene glycol (PG)] and of COREXIT™ EC9527A [2-butoxyethanol (2-BE) and PG] using two of AIHA IHMOD2.0© mathematical modeling tools along with the dispersants' chemical and physical properties. Monte Carlo simulations were used to reflect uncertainty in input parameters with both the two-box, constant emission model and the near and mid field plume model for indoor and outdoor activities, respectively. Possible exposure scenarios considered various evaporation rates, sizes of the dispersant pool, wind speeds, and ventilation rates. For the two-box model, mean near field exposure estimates to 2-BE ranged from 0.9 to 5.7 ppm, while mean far field estimated exposures ranged from 0.3 to 3.5 ppm. Estimates of mean near field plume model exposures ranged from 0.01 to 3.7 ppm at 2.5 ft from the source, and <0.01 to 0.3 ppm at 10 ft from the source. Estimated exposures to PG were approximately 10% of the calculated 2-BE exposures and exposures to petroleum distillates about 40% higher than the 2-BE estimates. Results indicate that compared with current occupational exposure guidelines, overexposure to petroleum distillates and PG probably did not occur in our study, but under some conditions, for short periods, exposure to 2-BE may have exceeded the limits for peak exposures. These estimates were developed for use in job-exposure matrices to estimate exposures of workers having contact with dispersant vapors for the GuLF STUDY
Considerations in relation to off-site emergency procedures and response for nuclear accidents
The operation of nuclear facilities has, fortunately, not led to many accidents with off-site consequences. However, it is well-recognised that should a large release of radioactivity occur, the effects in the surrounding area and population will be significant. These effects can be mitigated by developing emergency preparedness and response plans prior to the operation of the nuclear facility that can be exercised regularly and implemented if an accident occurs. This review paper details the various stages of a nuclear accident and the corresponding aspects of an emergency preparedness plan that are relevant to these stages, both from a UK and international perspective. The paper also details how certain aspects of emergency preparedness have been affected by the accident at Fukushima Dai-ichi and as a point of comparison how emergency management plans were implemented following the accidents at Three Mile Island 2 and Chernobyl. In addition, the UK’s economic costing model for nuclear accidents COCO-2, and the UK’s Level-3 Probabilistic Safety Assessment code “PACE” are introduced. Finally, the factors that affect the economic impact of a nuclear accident, especially from a UK standpoint, are described
Modeled Air Pollution from In Situ Burning and Flaring of Oil and Gas Released Following the Deepwater Horizon Disaster
The GuLF STUDY, initiated by the National Institute of Environmental Health Sciences, is investigating the health effects among workers involved in the oil spill response and clean-up (OSRC) after the Deepwater Horizon (DWH) explosion in April 2010 in the Gulf of Mexico. Clean-up included in situ burning of oil on the water surface and flaring of gas and oil captured near the seabed and brought to the surface. We estimated emissions of PM2.5 and related pollutants resulting from these activities, as well as from engines of vessels working on the OSRC. PM2.5 emissions ranged from 30 to 1.33e6 kg per day and were generally uniform over time for the flares but highly episodic for the in situ burns. Hourly emissions from each source on every burn/flare day were used as inputs to the AERMOD model to develop average and maximum concentrations for 1-, 12-, and 24-h time periods. The highest predicted 24-h average concentrations sometimes exceeded 5000 μg m-3 in the first 500 m downwind of flaring and reached 71 μg m-3 within a kilometer of some in situ burns. Beyond 40 km from the DWH site, plumes appeared to be well mixed, and the predicted 24-h average concentrations from the flares and in situ burns were similar, usually below 10 μg m-3. Structured averaging of model output gave potential PM2.5 exposure estimates for OSRC workers located in various areas across the Gulf. Workers located nearest the wellhead (hot zone/source workers) were estimated to have a potential maximum 12-h exposure of 97 μg m-3 over the 2-month flaring period. The potential maximum 12-h exposure for workers who participated in in situ burns was estimated at 10 μg m-3 over the ~3-month burn period. The results suggest that burning of oil and gas during the DWH clean-up may have resulted in PM2.5 concentrations substantially above the U.S. National Ambient Air Quality Standard for PM2.5 (24-h average = 35 μg m-3). These results are being used to investigate possible adverse health effects in the GuLF STUDY epidemiologic analysis of PM2.5 exposures
Critical exponents and equation of state of the three-dimensional Heisenberg universality class
We improve the theoretical estimates of the critical exponents for the
three-dimensional Heisenberg universality class. We find gamma=1.3960(9),
nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and
delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with
suppressed leading scaling corrections. Our results are obtained by combining
Monte Carlo simulations based on finite-size scaling methods and
high-temperature expansions. The critical exponents are computed from
high-temperature expansions specialized to the phi^4 improved model. By the
same technique we determine the coefficients of the small-magnetization
expansion of the equation of state. This expansion is extended analytically by
means of approximate parametric representations, obtaining the equation of
state in the whole critical region. We also determine a number of universal
amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.
Assessing Exposures from the Deepwater Horizon Oil Spill Response and Clean-up
The GuLF Study is investigating adverse health effects from work on the response and clean-up after the Deepwater Horizon explosion and oil release. An essential and necessary component of that study was the exposure assessment. Bayesian statistical methods and over 135 000 measurements of total hydrocarbons (THC), benzene, ethylbenzene, toluene, xylene, and n-hexane (BTEX-H) were used to estimate inhalation exposures to these chemicals for >3400 exposure groups (EGs) formed from three exposure determinants: job/activity/task, location, and time period. Recognized deterministic models were used to estimate airborne exposures to particulate matter sized 2.5 μm or less (PM2.5) and dispersant aerosols and vapors. Dermal exposures were estimated for these same oil-related substances using a model modified especially for this study from a previously published model. Exposures to oil mist were assessed using professional judgment. Estimated daily THC arithmetic means (AMs) were in the low ppm range (<25 ppm), whereas BTEX-H exposures estimates were generally <1000 ppb. Potential 1-h PM2.5 air concentrations experienced by some workers may have been as high as 550 μg m-3. Dispersant aerosol air concentrations were very low (maximum predicted 1-h concentrations were generally <50 μg m-3), but vapor concentrations may have exceeded occupational exposure excursion guidelines for 2-butoxyethanol under certain circumstances. The daily AMs of dermal exposure estimates showed large contrasts among the study participants. The estimates are being used to evaluate exposure-response relationships in the GuLF Study
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Longitudinal Assessment of Prenatal, Perinatal, and Early-Life Aflatoxin B1 Exposure in 828 Mother–Child Dyads from Bangladesh and Malawi
Background: In utero or early-life exposure to aflatoxin, which contaminates staple crops in disadvantaged settings, may compromise pregnancy and infant outcomes, but investigations into the extent, persistence, and determinants of aflatoxin exposure at these life stages have lacked longitudinal data collection and broad geographic representation. Objectives: Aflatoxin exposure and selected determinants thereof were characterized in mother–child dyads with serial plasma/serum samples in prenatal, perinatal, and early life in Malawi and Bangladesh. Methods: Circulating aflatoxin B1 (AFB1)–lysine albumin adducts were measured in dyads from Bangladesh (n = 573; maternal first and third trimester, 3 mo postpartum, cord blood, infant 24 mo) and Malawi (n = 255; maternal second and third trimester, 6 mo postpartum, infant 6 and 18 mo) with isotope dilution mass spectrometry. We examined AFB1-lysine adduct magnitude, persistence, seasonality, and associations with infant feeding, and estimated daily AFB1 intake. Results: Maternal AFB1-lysine was higher in Malawi (98% detectable; median: 0.469, IQR: 0.225–1.027 pg/μL) than in Bangladesh (59%; 0.030, nondetectable [nd]–0.077 pg/μL). Although estimated dietary exposure in Malawi was temporally stable (648 ng AFB1/day), estimated intake in Bangladesh was reduced by 94% between rainy and winter seasons (98 to 6 ng/day). AFB1-lysine was low in cord blood from Bangladesh (15% detectable; 0.045, 0.031–0.088 pg/μL among detectable) and in Malawian infants at 6 mo of age (0.072, nd–0.236 pg/μL), but reached maternal concentrations by 18 or 24 mo (Bangladesh: 0.034, nd–0.063 pg/μL; Malawi: 0.370, 0.195–0.964 pg/μL). In Malawian infants, exclusive breastfeeding at 3 mo was associated with 58% lower AFB1-lysine concentrations at 6 mo compared with other feeding modes (P = 0.010). Conclusions: Among pregnant women, aflatoxin exposure was persistently high in Malawi, while lower and seasonal in Bangladesh. Infants were partially protected from exposure in utero and with exclusive breastfeeding, but exposures reached adult levels by 18–24 mo of age. The Bangladesh and Malawi trials are registered at clinicaltrials.gov as NCT00860470 and NCT01239693. Curr Dev Nutr 2022;6:nzab153.publishedVersionPeer reviewe
Susceptibility to chronic mucus hypersecretion, a genome wide association study
Background: Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25x10-6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3x10 -9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH
Some aspects of the Liouville equation in mathematical physics and statistical mechanics
This paper presents some mathematical aspects of Classical Liouville theorem
and we have noted some mathematical theorems about its initial value problem.
Furthermore, we have implied on the formal frame work of Stochastic Liouville
equation (SLE)
- …