845 research outputs found

    On the accuracy of conservation of adiabatic invariants in slow-fast systems

    Full text link
    Let the adiabatic invariant of action variable in slow-fast Hamiltonian system with two degrees of freedom have two limiting values along the trajectories as time tends to infinity. The difference of two limits is exponentially small in analytic systems. An iso-energetic reduction and canonical transformations are applied to transform the slow-fast systems to form of systems depending on slowly varying parameters in a complexified phase space. On the basis of this method an estimate for the accuracy of conservation of adiabatic invariant is given for such systems.Comment: 27 pages, 14 figure

    On the hadronic contribution to sterile neutrino production

    Get PDF
    Sterile neutrinos with masses in the keV range are considered to be a viable candidate for warm dark matter. The rate of their production through active-sterile neutrino transitions peaks, however, at temperatures of the order of the QCD scale, which makes it difficult to estimate their relic abundance quantitatively, even if the mass of the sterile neutrino and its mixing angle were known. We derive here a relation, valid to all orders in the strong coupling constant, which expresses the production rate in terms of the spectral function associated with active neutrinos. The latter can in turn be expressed as a certain convolution of the spectral functions related to various mesonic current-current correlation functions, which are being actively studied in other physics contexts. In the naive weak coupling limit, the appropriate Boltzmann equations can be derived from our general formulae.Comment: 28 pages. v2: small clarifications added, published versio

    Duality properties of indicatrices of knots

    Full text link
    The bridge index and superbridge index of a knot are important invariants in knot theory. We define the bridge map of a knot conformation, which is closely related to these two invariants, and interpret it in terms of the tangent indicatrix of the knot conformation. Using the concepts of dual and derivative curves of spherical curves as introduced by Arnold, we show that the graph of the bridge map is the union of the binormal indicatrix, its antipodal curve, and some number of great circles. Similarly, we define the inflection map of a knot conformation, interpret it in terms of the binormal indicatrix, and express its graph in terms of the tangent indicatrix. This duality relationship is also studied for another dual pair of curves, the normal and Darboux indicatrices of a knot conformation. The analogous concepts are defined and results are derived for stick knots.Comment: 22 pages, 9 figure

    Fertilizing greenhouse vegetables

    Get PDF
    Caption title

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Estimating infarct severity from the ECG using a realistic heart model

    Get PDF
    The early phase of myocardial infarction is accompanied by changes in the ST segment of the ECG. This makes the ST segment the clinical marker for the detection of acute myocardial infarction. The determination of the infarct severity, location and size of the myocardial tissue at risk will support clinical decision making. In this study we used an inverse procedure to estimate the location and size of the infarcted heart region. The method estimates the local transmembrane amplitude based on the ECG amplitude near the J-point of the standard 12 leads signals using a patient specific volume conductor model. For the 5 available patient cases the positions as well as the size of the estimated infarct region were in accordance with results based on MRI

    Validation of infarct size and location from the ECG by inverse body surface mapping

    Get PDF
    This paper describes the incorporation of body surface mapping algorithms to detect the position and size of acute myocardial infarctions using standard 12 lead ECG recording. The results are compared with the results from cardiac MRI scan analysis. In case patient specific volume conductor models are used, the position of the infarction could be accurately determined. When generalized patient volume conductor models were examined, the estimation of the infarct position became significantly less accurate. The calculations of the size of the infarctions need further improvement

    Phase transitions in geometrothermodynamics

    Full text link
    Using the formalism of geometrothermodynamics, we investigate the geometric properties of the equilibrium manifold for diverse thermodynamic systems. Starting from Legendre invariant metrics of the phase manifold, we derive thermodynamic metrics for the equilibrium manifold whose curvature becomes singular at those points where phase transitions of first and second order occur. We conclude that the thermodynamic curvature of the equilibrium manifold, as defined in geometrothermodynamics, can be used as a measure of thermodynamic interaction in diverse systems with two and three thermodynamic degrees of freedom

    Systematic study of the effect of short range correlations on the form factors and densities of s-p and s-d shell nuclei

    Get PDF
    Analytical expressions of the one- and two-body terms in the cluster expansion of the charge form factors and densities of the s-p and s-d shell nuclei with N=Z are derived. They depend on the harmonic oscillator parameter b and the parameter ÎČ\beta which originates from the Jastrow correlation function. These expressions are used for the systematic study of the effect of short range correlations on the form factors and densities and of the mass dependence of the parameters b and ÎČ\beta. These parameters have been determined by fit to the experimental charge form factors. The inclusion of the correlations reproduces the experimental charge form factors at the high momentum transfers (q≄21/fmq\geq 2 1/fm). It is found that while the parameter ÎČ\beta is almost constant for the closed shell nuclei, 4^4He, 16^{16}O and 40^{40}Ca, its values are larger (less correlated systems) for the open shell nuclei, indicating a shell effect in the closed shell nuclei.Comment: Latex, 21 pages, 6 figures, 1 tabl

    On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces

    Get PDF
    We study the recurrence and ergodicity for the billiard on noncompact polygonal surfaces with a free, cocompact action of Z\Z or Z2\Z^2. In the Z\Z-periodic case, we establish criteria for recurrence. In the more difficult Z2\Z^2-periodic case, we establish some general results. For a particular family of Z2\Z^2-periodic polygonal surfaces, known in the physics literature as the wind-tree model, assuming certain restrictions of geometric nature, we obtain the ergodic decomposition of directional billiard dynamics for a dense, countable set of directions. This is a consequence of our results on the ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure
    • 

    corecore