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Abstract 

This paper describes the incorporation of body surface 
mapping algorithms to detect the position and size of 
acute myocardial infarctions using standard 12 lead ECG 
recording. The results are compared with the results from 
cardiac MRI scan analysis. In case patient specific 
volume conductor models are used, the position of the 
infarction could be accurately determined. When 
generalized patient volume conductor models were 
examined, the estimation of the infarct position became 
significantly less accurate. The calculations of the size of 
the infarctions need further improvement.   

 
 

1. Introduction 

In patients with evolving myocardial infarction (AMI) 
rapid treatment through percutaneous coronary 
intervention (PCI) has been shown to be most effective 
when performed within 2 hours after the onset of the 
symptoms [1-2].  The electrocardiogram (ECG) is 
considered to be the pivotal test for diagnosing AMI, 
initially. Therefore, both correct and rapid execution of 
the  interpretation of the ECG is mandatory in the process 
of optimal treatment of the AMI patient. Contemporary 
equipment are able to acquire and digitally transmit 
ECGs,  allowing for on-line consulting of clinicians 
capable to perform a PCI. However, increasing workload 
necessitates the involvement of paramedics and 
diagnostic algorithms built into the ECG equipment. 
Many algorithms have been developed to identify ST-
elevated myocardial infarction (STEMI) and predict the 
culprit artery from the ECG [3-5]. The algorithms vary 
from commercial available general purpose systems to 
systems especially designed for this purpose. However, 
the reliability of these algorithms has been shown to be 
moderate to poor, depending on the location of the culprit 
occlusion. The accuracy of the algorithms was even 
worse for ECG recordings of patients having a non-

STEMI myocardial infarction. Studies have shown that 
approximately 40% of the patients with a totally occluded 
coronary artery generate non-STEMI ECG recordings [5]. 
Also an algorithm [6] designed by our group, 
incorporating other parts of the ECG besides the ST-
segment, is performing suboptimal.  The meticulousness 
of each of these algorithms for a group of 525 STEMI 
patients is expressed by the Index of Merit (sensitivity + 
specificity – 100) for each of the major coronary arteries 
in table 1. 

 
Table 1. Indexes of Merit for 4 different algorithms. 
 

 RCA LAD LCX 
Fiol[3] 72.3 76.3 16.1 

Tierala[4] 71.9 82.3 29.9 
Wang[5] 55.1 46.0 25.3 
Maan[6] 70.4 82.2 46.4 

 
Given the inaccuracies of the algorithms discussed 

above, we have explored in the present study the 
potentials of body surface mapping models. The state of 
the art systems like ECGSIM [7] are able to simulate 
effects of  local physiological deviations due to the 
presence of myocardial ischemia on the ECG. During 
periods of ischemia electric activities of myocytes differ 
from electric activities in normal tissue. These differences 
are reflected in smaller transmembrane potential 
amplitude (TMP), shorter action potential duration (APD) 
and a decreased velocity of propagation. Using the  
inverse body surface mapping algorithms of the system, a 
recorded ECG can be  matched by a generated model-
ECG through a best fit algorithm by adjusting the size of 
the ischemic area, its TMP, APD and velocity of 
propagation. The incorporated fastest route algorithm 
enables for acceptable computation times. As a first step 
in evaluating this approach, we used a dataset of 41 well 
documented patients with a  STEMI who underwent a 
PCI procedure and a cardiac MRI scan to determine the 
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size and location of the myocardial infarction [8]. Twelve 
lead ECG recordings were taken, Creatine Kinase(CK), 
Creatine Kinase Myocardial Band(CK-MB),  and 
Troponine T (cTnT) levels were analyzed at various 
moments.  

 
2. Methods 

MRI images of 5 patients (1 female, 4 males) were 
used to determine the geometry of the heart, in addition 
generalized geometries of lungs and torso were 
constructed from the MRI, to constitute the mandatory 
electric volume conductor. The average amplitude of the 
J+40 ms till J+60 ms interval of each selected  beat of 12 
lead surface ECG recordings were used to adapt the 
parameters of the model to the surface ECG. In the 
present study only location and size of the ischemic area 
and the TMP are adapted using a best fit algorithm [9]. 
The current algorithms are only be applied for the 
simulation of transmural infarctions. As of yet correlation 
with occluded coronary arteries was not assessed. 

MRIs were performed at least 2 days after PCI. 
Patients were studied on a clinical 1.5 Tesla scanner. 
Electrocardiogram-gated images were acquired during 
repeated breath-holds of approximately 10 seconds. 
Infarct size analysis was performed by a blinded core 
laboratory.  According to the 17-segment model  as 
recommended by the American Heart Association, 
segment location was defined using cine images and late 
gadolinium enhancement (LGE) images (fig. 1) [10].  

 
 

 
 

Figure 1. Standardized myocardial segmentation and 
nomenclature for tomographic imaging of the heart. 
 

Segmental wall thickening was calculated by 
subtracting end-diastolic from end-systolic wall 
thickness. Dysfunctional segments were defined as 

segments with systolic wall thickening of less than 3 mm. 
The superficial extent of the myocardial infarction was 
calculated by summation of all slice volumes of 
hyperenhancement, using a standardized and predefined 
definition (signal intensity > 5 SD above the mean signal 
intensity of remote myocardium),  and expressed as 
percentage of LV mass. The transmural extent of 
infarction was calculated by dividing the hyperenhanced 
area by the total area of the predefined segment  [11].  
Segments with more than 50% hyperenhancement were 
considered segments with transmural infarction. Segment 
17 (apex) was excluded since segmental evaluation in the 
short axis orientation is considered unreliable.   

To compare the results from ECGSIM with MRI-
analyses, the ECGSIM data were also converted to 
standard 17-segment bull’s-eye maps (fig.1). The 
optimization algorithm calculates from the ECG  the 
ischemic / infarcted area through determination of the 
locations of the nodes where the Trans Membrane 
Potential amplitude has been decreased by more than 
15%. The volume is derived through multiplication of the 
ischemic / infarcted area by the local wall thickness [9]. 

  
3. Results 

 
In table 2 the baseline patient and angiographic 

characteristics are shown. 
 
Table 2. Baseline characteristics of the dataset 
 

Number of patients  41  
Male  32 Age 45 - 71 

Female  9 Age 38 - 67 
100% occluded arteries RCA 10  

 LAD 24  
 LCX 7  

 
In 14 out of the 41 patients analysis of MRI-scans did 

not result in identifying a transmural ischemic / infracted 
region, though in blood samples changes in levels of 
cardiac markers, such as Troponine, indicated tissue 
damage. This discrepancy could be caused by on time 
reperfusion through fast track PCI, inability of the MRI to 
analyze apical ischemic changes or sudden oxygen supply 
through recruited collaterals. The latterpreventing 
massive myocardial areas from becoming necrotic. The 
data of the remaining 27 patients were used to validate 
the described inverse procedure. 

Van Dam et al. [9] showed that optimal results were 
obtained when patient specific volume conductor models 
were used.  

Figure 2 is an example of such a patient specific bull’s-
eye plot of a calculated infarcted region generated by 
ECGSIM. The different colors represent the amount of 
TMP amplitude decrement. A decrease in amplitude of > 
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15% indicates ischemia. The calculated location of the 
infarction corresponds with the MRI-reference[10].  

 

 
Figure 2. Bull’s-eye presentation of Left Ventricle. 

Color shades represent ischemic tissue. The segmentation 
is in accordance with the standard. 
 

Similar correlations are found for the other 4 patients 
using the specific volume conductor model. Since it is not 
feasible in acute situations to construct a patient specific 
volume conductor model we only used two gender-
dependent models. These 2 models were derived from the 
5 elaborated ones, the female model and an average male 
model. 

In table 3 the calculated ischemic / infarcted segments 
are shown for both methods, using the female volume 
conductor model. The segments displayed between 
brackets had a hyperenhancement between 30% and 50% 
indicating non-transmural damage. In table 4 the results 
for male patients are displayed with the male volume 
conductor model that generated the best agreements with 
the MRI reference segments. In contrast to table 3 
(females), we observed in about 85% of the male cases 
correspondence between ECG and MRI determined 
locations of the ischemic / infarcted regions. 

 
 
Table 3. Left ventricular infarcted region location for 

female patients 
 

patient MRI segments ECG segments 
A 7,8,13(2) 11(4,5,10) 
B 10,15(3,4,5,9,11) 9,10(14,15) 
C 5,6,11,12,16(15) 5,11(4,6) 
D 13 5(4,11) 
E 4,5(10,11) 11(4,5,10) 
F 2,7,8,9,13,14(16) 5,11(4,10) 
G 1,2,6,7,8,12,13,14,16(9) (4,5,10,11) 
H 7,13 11(4,5,10) 

 

Table 4. Left ventricular infarcted region location for 
19 male patients 

 
 
In figure 3 the derived volume of the myocardial 

infarction is plotted against the derived volume from the 
MRI analysis. Both methods generate uncorrelated 
results. 

 
 

 
 
Figure 3. Relation between the infarct volume 

assessment by inverse ECG based method and MRI 
analysis. 

 

patient MRI segments ECG segments 
A 7,8,13,14(1,9) 8,13,14,17(15) 
B 7,8,13(14) 8,9,14(13,15) 
C 7,13(14) 8,9,14(13,15) 
D 8,9,13,14(2,15) 14(7,8,9,15) 
E 5(3,10,11,15) (2,3,6,12) 
F 5,6,11,12,16(1,15) (5,6,11,12) 
G 4,10,15(5) (9,10,14,15) 
H 8,13,14 14(8,9,13,15,17) 
I 11(5) (8,9,10) 
J 4,9(3,14) (3,4,9,10) 
K 8,13,14(2,7,9,15,16) 14(8,913,15,17) 
L 1,2,6,7,8,12,13,14,16 14(8,9,13,15) 
M 7,13(1) 8,9,14(13) 
N 7,8,13,14(2,3) 14(8,9,13,15) 
O 13(1,7) 14(8,9) 
P 8,14(2,7,13) 8,14(9,13,15) 
Q 5,11,15(3,10,16) (9,14,15) 
R 13 8,13(9,14,17 
S 4,5(10,11) 3,4(10,11) 
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4. Discussion 

The position of the STEMI area on just the standard 12 
lead ECG and an accurate patient specific volume 
conductor model can be accurately determined as is 
shown for a group of 5 patients. However, this accuracy 
decreases when no patient specific volume conductor 
model is available and therefore a generalized model has 
to be used, which is the case in daily practice. Even two, 
gender dependent, volume conductor models did not 
generate acceptable results, although the incorporation of 
a “male”-model  did improve the outcome significantly. 
This stimulates the idea to develop more generalized 
models depending on gender, age, weight, etc.. Also 
different electrode positions should be considered since 
this has been shown to be beneficial for inferior 
myocardial infarction. 

The derived volume if the ischemic / infarcted area 
disagrees significantly with the area calculated from 
MRI-scans. This might be partially explained by the fact 
that the ECG’s were recorded at the same day as the PCI 
procedure whereas the MRI-scans were performed 2 – 4 
days later. Furthermore the translation from 
electrophysiological changes due to ischemia to a 
mathematical formulation has to be examined. 

Once an accurate algorithm for the location and size of 
transmural   infarction is realized, extension to analyzing 
non-STEMI infarction and locating the culprit occlusion 
will have to be taken before the system can be applied in 
daily practice. 
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