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1. Introduction: Floating in Neutral Equilibrium and the Billiard Ball Problem

The mathematical theory of capillarity goes back to 1806. In his famous treatise on celestial mechan-
ics [32] Laplace discussed a broad range of problems related to surface tension at fluid interfaces, among
them a theory of capillary floating. One of the major open problems in this subject is to determine
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Fig. 1. Floating in neutral equilibrium; γ is the contact angle

configurations at which a particular body will float on a liquid surface. In [32] Laplace characterized
some special cases of capillary floating which was an astonishing achievement for his time. There are
several physical phenomena that need to be taken into account: The mass distribution in the body, the
gravity, the surface tension, etc. This leads to a highly nonlinear free boundary problem.

Among various hypotheses that have been proposed to make specific configurations technically acces-
sible, Finn introduced in [14] the notion of neutral equilibrium, essentially assuming that the external fluid
free surface for a floating body is ideally flat, but nevertheless allowing for surface forces. This concept
thus takes partial account of surface tension. In the model case of two dimensions Finn showed that under
reasonable physical assumptions his concept is equivalent to the original theory. As a precautionary note,
we observe that there are also other concepts of floating in neutral equilibrium in the literature. The
reader should be aware that different concepts lead to different results. See, e.g., Varkonyi [40] for details.
In what follows we adopt Finn’s approach, and will simply speak of floating (in neutral equilibrium). We
will soon reformulate conditions of floating in neutral equilibrium purely geometrically.

Let Ω ⊂ R
2 be a bounded, convex, planar domain. Let C(Ω) ⊂ R

3 be an infinite homogeneous cylinder
with the cross-section Ω. Then C(Ω) floats at a constant contact angle in any orientation if and only
if the region Ω satisfies a straightforward geometric requirement. Figure 1 illustrates this. In Sect. 2 we
interpret this geometric condition from the viewpoint of the billiard on Ω and study this billiard problem
in Sect. 3. The first work relating two-dimensional capillary floating with convex geometry appears to
be [35]. The main result there says that any convex, bounded, sufficiently regular planar domain will
float at a given contact angle in at least four distinct orientations. The proof in [35] is based on the four
vertex theorem.

Before describing our results, we will further elaborate on the capillary floating in three dimensions.
The conjecture that the round ball is the only body to float in neutral equilibrium at any orientation is
usually ascribed to Ulam. See [2,36]. Various authors have mathematically reformulated this question in
different, albeit related ways. The interpretation of Finn [14–18] takes into account the surface tension;
some other interpretations disregard it [40]. Whatever the interpretation may be, in three dimensions
the conditions of floating in neutral equilibrium are much more restrictive than in the model case of
two dimensions. Thus, Finn and Sloss [17] show that the only three-dimensional body to float in neutral
equilibrium in any orientation at a constant contact angle is the round ball. The problem of floating three
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Fig. 2. The billiard phase space as a space of rays intersecting the billiard table

dimensional bodies generates challenging questions about surfaces in R
3. In the present work we relate

two-dimensional floating to the geometry of convex curves in R
2.

The geometry of convex planar domains Ω is crucial for the billiard ball problem championed by
Birkhoff in the early twentieth century [7]. It can also be viewed as a highly specialized case of a physical
situation. The billiard ball is a point that travels with the unit speed inside Ω reflecting at the boundary
∂Ω according to the law of equal angles. Disregarding the motion of the ball between collisions with the
boundary, we reduce the billiard ball problem to the study of the billiard map on Ω. Invariant curves of
this map provide crucial insights into the billiard dynamics. Let s be the arc length variable on ∂Ω, and
let θ be the outgoing angle. See Fig. 3. Beginning with Birkhoff, invariant curves of the form θ = h(s)
played an important role in the study of billiard dynamics.

The functions θ = h(s) that yield invariant curves have been extensively investigated [13,27,30,33].
The present work is based on a reformulation of the floating problem as a billiard ball problem. Namely,
the cylinder with the cross-section Ω floats in neutral equilibrium at any orientation with the contact
angle γ if and only if the billiard table Ω admits the invariant curve θ = h(s) with the constant function
h(s) ≡ π − γ. For the reasons that we will explain in Sect. 2, we call these invariant curves the constant
angle caustics for Ω. The floating problem thus becomes the following billiard problem: Find the regular,
convex billiard tables that admit constant angle caustics; determine the corresponding angles. This work
provides a fair amount of information on this.

We will now briefly describe the results and the structure of the paper. In Sect. 2 we review the concept
of the billiard map. Let Ω ⊂ R

2 be a bounded, strictly convex domain with the smooth boundary ∂Ω.
The phase space Z = Z(Ω) for the billiard map on Ω consists of rays1 intersecting Ω. Let 0 ≤ θ, θ1 ≤ π be
the two angles that a ray l ∈ Z forms at the points of intersection s, s1 ∈ ∂Ω. See Fig. 2. Let F : Z → Z
be the billiard map. The ray l1 = F (l) is obtained by reflecting l at s1 about ∂Ω, as if ∂Ω was a perfect
mirror. The domain Ω floats in neutral equilibrium at any orientation with a constant contact angle if
and only if there exists 0 < δ < π such that for any l ∈ Z satisfying θ(l) = δ we have θ1(l) = δ.

Further in Sect. 2 we study this geometric condition from the viewpoint of the billiard map. Let ρ(s)
be the radius of curvature for ∂Ω; let ck, k ∈ Z, be its Fourier coefficients. Note that ∂Ω is circular if and

1I. e., oriented straight lines.
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Fig. 3. The billiard map for a regular convex domain

only if ck = 0 for all nonzero k. Theorem 1 says that a noncircular domain Ω has the above property
if and only if the following conditions hold: (i) There exist n > 1 such that the pairs n, δ satisfy the
trigonometric equation (6); (ii) At least one of the corresponding coefficients cn �= 0; (iii) For all k ∈ Z

such that the pair k, δ does not satisfy Eq. (6), we have ck = 0.
The value δ = π/2 is special since for any odd n the pair n, π/2 satisfies Eq. (6). The corresponding

regions Ω are the domains of constant width; they are well known in geometry. We briefly review this
material in Sect. 5.

In Sects. 3 and 4 we study Eq. (6) further, and obtain several applications. The symmetry δ′ = π − δ
allows us to reduce the study of Eq. (6) to the range 0 < δ < π/2. Restricted to this interval, Eq. (6) is
equivalent to tannx = n tan x. We obtain fairly detailed qualitative information about solutions of these
equations. Let Bn ⊂ (0, π/2) denote the set of solutions. We show that Bn has roughly n/2 elements;
it is (π/n)-dense in the interval (0, π/2). For every n > 3 we exhibit a one-parameter family Ωn,τ of
non-circular, real analytic domains that float in neutral equilibrium in every orientation at the contact
angles π − γ, where γ ∈ Bn.2 See Theorem 2 and Corollary 2.

A classification of domains that float in neutral equilibrium at constant contact angles hinges on com-
plete analysis of solutions to tan nx = n tan x. See Question 1. In particular, we need to know whether
the sets Bn, Bm are disjoint for m �= n. In Sects. 6 and 7.1 we reduce these questions to a study of roots
of an infinite chain of polynomials Sn that are closely related to Chebyshev polynomials. This reveals a
number-theoretic aspect of capillary floating.

In Sect. 7.1 we obtain some information about the roots of polynomials Sn. However, the question
whether Sm, Sn have nontrivial common roots for m �= n remains unresolved. This circumstance prevented
the author from publishing his findings immediately after the 1993 PennState Dynamics Workshop [20].
The book [37] contains a brief report on some of the results in [20].

In Sect. 7.2 we formulate Conjectures 1 and 2. The former is about the roots of polynomials Sn and
the latter is about the sets Bn. They are equivalent, and we will refer to them simply as the Conjecture.
Further in Sect. 7.2 we present substantial evidence corroborating the Conjecture. In Sects. 8.1 and 8.2,
assuming that the Conjecture holds, we derive consequences for the billiard and for the floating respec-
tively. Theorems 4, 5, and Corollary 7 classify billiard tables with constant angle caustics. Theorem 6
gives a full description of regular planar domains that float in neutral equilibrium in any orientation at
constant contact angles.

2By symmetry, they also float at angle γ.
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The present work can be viewed as one of many examples of fruitful relationships between the bil-
liard and other mathematical subjects. We refer the reader to [4,5,12,19,22,24,25,29,31,37,38] for other
examples of this nature. The billiard framework offers a variety of open problems that often bear on
fundamental and elementary mathematical concepts [23]. The author hopes that the present work will
help to advertise the subject in the mathematical fluid mechanics community.

The author is grateful to Bob Finn for bringing the subject of capillary floating to his attention and for
pointing out to him its relationship to the billiard framework. Finn encouraged the author to write up the
material outlined in [20] and made useful comments on the presentation. The comments of anonymous
referee are also gratefully acknowledged. The work was partially supported by the MNiSzW grant N N201
384834.

2. The Birkhoff Billiard: General Caustics Versus Constant Angle Caustics

The billiard in the sense of Birkhoff plays on a compact, convex domain Ω ⊂ R
2. We will assume that

the boundary ∂Ω is twice continuously differentiable. Let 0 ≤ s ≤ |∂Ω| be an arc length parameter. Then
the curvature κ(s) is a continuous, nonnegative function on ∂Ω. We will assume throughout the paper
that Ω is strictly convex in the sense of differential geometry: κ > 0. In what follows we refer to such Ω
as regular billiard tables, or regular convex domains.

The elements of the phase space of the billiard map are the inward pointing unit vectors v based on
∂Ω. Let 0 ≤ θ ≤ π be the angle between v and the positively oriented ∂Ω. The coordinates 0 ≤ s ≤
|∂Ω|, 0 ≤ θ ≤ π induce a diffeomorphism of the phase space Z and the cylinder (R/|∂Ω|Z) × [0, π].

The phase point (s, θ) ∈ Z corresponds to the billiard ball located at s ∈ ∂Ω, which is about to shoot
of in the direction that makes angle θ with ∂Ω. This shot lands at s1 ∈ ∂Ω. Let 0 ≤ θ1 ≤ π be the other
angle of the chord [s, s1]. The ball bounces elastically at the boundary and is set to shoot of again. The
law of equal angles yields that the new vector v1 makes angle θ1 with ∂Ω. The transformation F : Z → Z
given by F (s, θ) = (s1, θ1) is the billiard ball map for Ω. Figure 3 illustrates the discussion.

By our assumptions on Ω, the billiard map is of class C1. Let l(s, s1) denote the length of the chord
[s, s1]. The differential of the billiard map is given by the following expressions [27]:

∂s1

∂s
=

κ(s)l(s, s1) − sin θ

sin θ1
,

∂s1

∂θ
=

l(s, s1)
sin θ1

,
∂θ1

∂θ
=

κ(s1)l(s, s1) − sin θ1

sin θ1
,

and
∂θ1

∂s
=

κ(s)κ(s1)l(s, s1) − κ(s) sin θ1 − κ(s1) sin θ

sin θ1
.

The billiard ball map is an area preserving twist map. The classical results of Birkhoff on the dynamics
of the billiard map got a “second life” in the subject of area preserving twist maps. See the accounts in
[3,34]. We are concerned with a particular aspect of the billiard ball map: Invariant circles.

Definition 1. Let Ω be a regular billiard table. An invariant circle for the billiard map on Ω is a closed
curve Γ ⊂ Z which is homotopic to a boundary component of Z and is invariant under the billiard map.

By a theorem of Birkhoff, any invariant circle Γ is the graph of a lipshitz function: θ = hΓ(s). Thus,
for every base point s ∈ ∂Ω there is a unique angle θ = hΓ(s) such that the ball shooting from s in
the direction θ will “stay” on the invariant circle Γ. For a typical Γ the function hΓ is not constant. See
[3,21,27,28,30,33]. We will study invariant circles such that hΓ is constant. Both boundary components
of Z are trivial invariant circles of that type. We will consider only nontrivial invariant circles in what
follows. To simplify the terminology, we will often call them the invariant curves. This is justified, since
we will not study other invariant curves.

Definition 2. Let Γ ⊂ Z be an invariant circle, and let θ = hΓ(s) the corresponding lipshitz function. If
hΓ = const, we will say that Γ is a constant angle invariant circle. A constant angle invariant circle is
determined by that angle, say 0 < δ < π. We will denote it by Γδ. See Fig. 4.
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Fig. 4. Billiard map phase space with a general invariant circle and a constant angle invariant circle

It is instructive to think of Z as the space of oriented lines (i. e., rays) intersecting Ω, or, alternatively,
as the space of directed chords in Ω. In this representation, an invariant circle Γ is a one-parameter family
of rays. Its envelope γ ⊂ R

2 is the caustic of Ω corresponding to the invariant circle Γ.3

Let Γ′ be the family obtained from Γ by reversing the directions of rays. Then Γ′ is an invariant circle
as well. This is a consequence of the well known fact that the direction reversing involution σ : Z → Z
conjugates the billiard map with its inverse: σFσ = F−1. Note that Γ and Γ′ have the same envelope;
hence, the correspondence between invariant circles and the caustics is 2-to-1. The geometry of billiard
caustics offers challenging open questions. See [13,27,28] for this material. Since invariant circles are
determined by their caustics essentially uniquely, in what follows we identify them; in particular, we will
speak of general caustics and of constant angle caustics.

Remark 1. The reader should keep in mind that the two invariant circles, say Γ and Γ′ = σ(Γ) corre-
sponding to the caustic γ are distinct subsets of the phase space Z. Let 0 < r(Γ) < 1 be the rotation
number of the invariant circle. Then r(Γ′) = 1 − r(Γ).

Since ∂Ω is strictly convex, we parameterize it by the direction 0 ≤ α ≤ 2π of the tangent ray to s ∈ ∂Ω.
Thus, s = s(α). The derivative ρ(α) = ds/dα is the radius of curvature function for Ω. Set T = R/2πZ.
Then the billiard map is a diffeomorphism of T × [0, π]; we will use the notation F (α, θ) = (α1, θ1).

Proposition 1. Let Ω ⊂ R
2 be a billiard table, and let ρ(α), 0 ≤ α ≤ 2π, be its radius of curvature. Then

Ω has the constant angle caustic Γδ iff the function ρ(·) satisfies the identity
α+δ∫

α−δ

ρ(ξ) sin(α − ξ)dξ = 0. (1)

3The term “caustic” is widely used in geometric optics, mechanics, and the geometric theory of singularities; in these
contexts it means different, although related things. We refer the reader to [1,6,11] for more information.
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Fig. 5. The billiard map restricted to a constant angle invariant circle

Proof. Set P = P (α) = (x(α), y(α)) and let P1 = P (α1). Let O be the intersection point of the tangent
lines at α and α1. From the triangle POP1 we have α1 = α + 2δ. See Fig. 5. As is well known

x′(α) = ρ(α) cos α, y′(α) = ρ(α) sin α. (2)

Thus

x(α + 2δ) − x(α) =

α+2δ∫

α

ρ(ξ) cos ξdξ,

y(α + 2δ) − y(α) =

α+2δ∫

α

ρ(ξ) sin ξdξ.

The direction of the chord [PP1] is α + δ. We introduce the new variable β = α + δ. Thus, the slope
of [PP1] is tan β. Computing the slope from the coordinates of points P and P1, we obtain

∫ β+δ

β−δ
ρ(ξ) sin ξdξ∫ β+δ

β−δ
ρ(ξ) cos ξdξ

= tan β. (3)

Equation (3) is an identity that holds for any β ∈ T. Performing elementary trigonometric manipula-
tions in Eq. (3), and renaming the independent variable by α again, we obtain the claim. �

We will briefly review basic facts from harmonic analysis on the circle. The reader may find proofs of
the statements below in most analysis textbooks.

If g is a distribution on T, its Fourier transform is defined by ĝ(n) =
∫
T

g(α)e−inαdα for n ∈ Z. The

radius of curvature has a Fourier expansion

ρ(α) =
∑
n∈Z

cneinα (4)
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where cn = ρ̂(n)/2π are the Fourier coefficients. The Fourier coefficients of a real function satisfy c−n = c̄n.
Equation (4) is equivalent to the trigonometric expansion

ρ(α) = a0 +
∑
n≥1

an cos nα + bn sin nα

whose coefficients are real. The coefficients in these equations are related by a0 = c0 and an = 2�(cn), bn =
−2	(cn) for n > 0.

Denote by x+ y the group operation on T. Let k(·) be a function or a distribution on T. The operator
of convolution with k is defined by

(Kρ)(x) =
∫

T

ρ(x − ξ)k(ξ)dξ =
∫

T

ρ(ξ)k(x − ξ)dξ. (5)

The standard notation for convolution operators is K(ρ) = ρ ∗ k = k ∗ ρ.
Let Fn be the complex line in the space of functions on T spanned by einx. We view Eq. (4) as the

orthogonal decomposition by the subspaces Fn, n ∈ Z. Convolution operators preserve this decompo-
sition. The restriction K|Fn

is the operator of multiplication by k̂(n). The above discussion yields the
following statement which is crucial for Theorem 1.

Lemma 1. Let k(·) be a distribution on T, and let k̂(n), n ∈ Z, be its Fourier transform. Let K be the
operator of convolution with the distribution k(·). Let ρ(·) be a function on T, and let cn, n ∈ Z, be its
Fourier coefficients.

Then Kρ = 0 iff k̂(n)cn = 0 for all n ∈ Z.

Theorem 1. Let Ω ⊂ R
2 be a regular, noncircular billiard table. Let ρ(·) be the radius of curvature of ∂Ω,

and let cn, n = 1, 2 . . . be its Fourier coefficients. Then Ω has the constant angle caustic Γδ if and only if
the following conditions hold:

(i) There exist n > 1 such that

sin(n − 1)δ
n − 1

=
sin(n + 1)δ

n + 1
; (6)

(ii) We have ck = 0 for all k > 1 such that Eq. (6) is not satisfied.
(iii) We have cn �= 0 for at least one n > 1 such that Eq. (6) is satisfied.

Proof. By Proposition 1, Γδ is a caustic for Ω iff ρ(·) belongs to the zero space of the convolution with
the function

k(x) = (sin x) 1[−δ,δ]. (7)

The function k(·) is odd, hence k̂(0) = 0. By a straightforward computation, for n > 1 we have

i · k̂(n) =
sin(n − 1)δ

n − 1
− sin(n + 1)δ

n + 1
.

It is well known that for any billiard table Ω we have c1 = 0. By Lemma 1, Γδ is a caustic for Ω iff
cmk̂(m) = 0 for all m. By the preceding discussion, Γδ is a caustic iff

cm

[
sin(m − 1)δ

m − 1
− sin(m + 1)δ

m + 1

]
= 0

for m > 1. Since Ω is not circular, at least one coefficient, say cn, does not vanish. But Γδ being a caustic,
Eq. (6) holds for all n > 1 such that cn �= 0. �
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3. Constant Angle Caustics and a Chain of Trigonometric Equations

By Theorem 1, the description of billiard tables with constant angle caustics hinges on solving Eq. (6).
In this section we will reduce Eq. (6) to a chain of trigonometric equations involving the function tan(·).

Let An ⊂ (0, π) be the set of δ such that the pair δ, n satisfies Eq. (6). Set

A = ∪∞
n=2An.

Lemma 2. Let n > 1. Then the following claims hold.

(i) We have π
2 ∈ An iff n is odd.

(ii) Set Ãn = An \ {π
2 }. Then Ãn is the set of solutions in (0, π) of the equation tan nδ = n tan δ.

Proof. Set δ = π
2 . If n is odd, then both sides in Eq. (6) vanish, hence π

2 ∈ An. If n is even, then the
numerators in Eq. (6) are ±1, and their signs are opposite. Thus, π

2 /∈ An, proving claim (i).
Let δ ∈ An. Arguing as above, we establish that sin(n + 1)δ = 0 iff n is odd and δ = π

2 . Hence for
δ ∈ Ãn we have sin(n − 1)δ, sin(n + 1)δ �= 0. Therefore, Ãn is the set of δ ∈ (0, π) satisfying

sin(n − 1)δ
sin(n + 1)δ

=
n − 1
n + 1

.

We rewrite this as
sin nδ cos δ − cos nδ sin δ

sin nδ cos δ + cos nδ sin δ
=

n − 1
n + 1

. (8)

If cos nδ = 0, then the left hand side in Eq. (8) is 1, which is impossible. Thus, cos nδ �= 0. Dividing the
numerators and the denominators in Eq. (8) by cos δ cos nδ, we obtain

tan nδ − tan δ

tan nδ + tan δ
=

n − 1
n + 1

.

Claim 2 follows. �

Remark 2. We point out that equations similar to tannx = n tan x arise in several contexts. Some
of these contexts are directly related to floating [10,40,41], while others are formally independent, but
intrinsically related to it [39].

For X ⊂ R and a ∈ R let {a − X} = {a − x : x ∈ X}. Set Ã = A \ {π
2 }. Then

Ã = ∪∞
n=2Ãn. (9)

Set Bn = An ∩ (0, π/2) and B = A∩ (0, π/2). Lemma 2 and the preceding discussion imply the following.

Proposition 2. Let n > 1. Then for n even, An = Bn∪{π−Bn} and for n odd, An = Bn∪{π−Bn}∪{π
2 }.

Moreover, Bn is the set of solutions in (0, π/2) of the equation

tan nx = n tan x. (10)

We proceed to analyze the chain of Eq. (10) in the interval (0, π/2).

Proposition 3. 1. Let n > 1 be even. Then Bn consists of n
2 − 1 points ξ

(n)
k , where

2k

2n
π < ξ

(n)
k <

(2k + 1)
2n

π : k = 1, . . . ,
n

2
− 1.

2. Let n > 1 be odd. Then Bn consists of n−1
2 − 1 points ξ

(n)
k , where

2k

2n
π < ξ

(n)
k <

(2k + 1)
2n

π : k = 1, . . . ,
n − 1

2
− 1.
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Fig. 6. The graphs of functions y = tan nx and y = n tan x for n even

Proof. The graph of the function y = tan nx on (0, π/2) is the disjoint union of n connected curves; we
will call them branches. A branch is defined on the interval k

2nπ < x < k+1
2n π : 0 ≤ k ≤ n − 1. Set

I
(n)
k = ( k

2nπ, k+1
2n π). Each branch extends by continuity to one of the endpoints of I

(n)
k . These endpoints

don’t enter in our analysis, and we ignore them in what follows. We say that a branch is positive (resp.
negative) if it belongs the the upper (resp. lower) halfplane.

Positive branches correspond to I
(n)
k with k even. Thus, there are n/2 (resp. (n − 1)/2) positive

branches if n is even (resp. odd). We observe that each point in Bn belongs to the intersection of the
graph of y = n tan x on (0, π/2) with a positive branch; this intersection contains at most one point. See
Figs. 6 and 7.

Comparing the asymptotics of n tan x and tannx as x → 0+, we see that the first branch, which
corresponds to k = 0, does not yield an intersection point. When n is even, all other positive branches
intersect the graph n tan x. This proves claim 1. Let now n be odd. Then both the last branch and the
graph of y = n tan x are asymptotic to the vertical line x = π/2. Comparing the asymptotics of n tan x
and tannx as x → π

2 −, we see that the curves do not intersect. This proves claim 2. We leave details to
the reader. �

We will state an immediate consequence of Proposition 3.

Corollary 1. We have |An| = n − 2. The sets An are 2π/n dense in (0, π).

Proof. By Lemma 2 and Proposition 2, |An| = 2|Bn| if n is even and |An| = 2|Bn| + 1 if n is odd. The
first claim now follows from Proposition 3. The above propositions imply that the distances between
consecutive points of An are at most π/n. Besides, the distances from An and the endpoints of (0, π) are
at most 2π/n. �
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Fig. 7. The graphs of functions y = tan nx and y = n tan x for n odd

4. Immediate Applications to the Billiard and Floating

The above results have immediate consequences for the billiard and the floating. We begin with the
former. We will say that the billiard tables Ω1,Ω2 are equivalent if there is a mapping F : R

2 → R
2 which

is an isometry up to a homothety, and such that F (Ω1) = Ω2. For instance, all discs in R
2 are equivalent.

All squares are also equivalent.

Theorem 2. There is a dense countable set Ã ⊂ (0, π) \ {π/2} such that the following holds.

1. For any δ ∈ Ã there is n > 1 and a real analytic 1-parameter family Ωn,τ , 0 ≤ τ < 1, of pairwise
inequivalent, regular billiard tables having the constant angle caustic Γδ. The curves ∂Ωn,τ are real
analytic; ∂Ωn,0 is the unit circle.

2. A regular billiard table Ω has the caustic Γπ/2 iff ∂Ω is a curve of constant width.
3. Let 0 < δ < π belong to the complement of Ã ∪ {π/2} in (0, π). If a regular billiard table Ω has the

constant angle caustic Γδ, then Ω is circular.

Proof. Let Ãn and Ã be as in Eq. (9). Then δ ∈ Ã iff there exists n > 1 such that tan nδ = n tan δ. Let
a, b ∈ R be arbitrary. Set

ρ(α) = 1 + a cos nα + b sin nα.

By elementary trigonometry, there exists α0 depending on a, b, n such that ρ(α) = 1+
√

a2 + b2 sin n(α+
α0). This is the radius of curvature of a regular billiard table iff a2 + b2 < 1. Different values of α0

correspond to isometric billiard tables. Set ρn,τ (α) = 1 + τ sin nα.



374 E. Gutkin JMFM

Integrating Eq. (2), we obtain

xn,τ (α) = ξ0 + sin α +
τ

2(n − 1)
cos(n − 1)α − τ

2(n + 1)
cos(n + 1)α, (11)

yn,τ (α) = η0 − cos α +
τ

2(n − 1)
sin(n − 1)α − τ

2(n + 1)
sin(n + 1)α. (12)

Fixing the constants ξ0, η0, we obtain a real analytic family Ωn,τ . This proves claim 1. Claim 2 follows
from the material in Sect. 5. Claim 3 is immediate from Theorem 1. �

Set ρ(α) = c + a cos nα + b sin nα. This formula, provided 0 ≤ √
a2 + b2 < c, yields a 3-parameter

family of functions that serve as radii of curvature for billiard tables Ω having the caustic Γδ. Equa-
tions (11), (12) yield a 5-parameter family of these domains. However, the equivalence eats up 4 of the
parameters. We view Eqs. (11), (12) as a deformation Ωn,τ of the circular table.

The following is the counterpart of Corollary 2 for the floating in neutral equilibrium. Its claims are
the reformulations of the corresponding claims in Corollary 2; we do not repeat the proofs.

Corollary 2. There is a dense countable set Ã ⊂ (0, π) \ {π/2} such that the following holds.

1. For any δ ∈ Ã there is n > 1 and a real analytic 1-parameter family Ωn,τ , 0 < τ < 1, of pairwise
inequivalent planar domains with real analytic boundaries that float in neutral equilibrium at any
orientation with the contact angle π − δ. The domain Ωn,0 is the unit circle.

2. A regular convex domain floats in neutral equilibrium at any orientation with the contact angle π/2
if and only if its boundary is a curve of constant width.

3. Let 0 < δ < π belong to the complement of Ã ∪ {π/2} in (0, π). If a regular convex domain floats in
neutral equilibrium at any orientation with the contact angle δ, then it is a disc.

For each δ ∈ B Corollary 2 exhibited a 1-parameter family of billiard tables with a constant angle
caustic Γδ. Are there more?

Question 1. Let δ ∈ B. Describe the set of billiard tables Ω such that Γδ is a caustic. Equivalently,
describe the set of cross-sections of cylinders that float in neutral equilibrium with the contact angle
π − δ at any orientation.

In order to make progress on Question 1, we need to investigate the intersection sets Bn ∩ Bm for
1 < m < n. This leads to number theoretic questions which we will study in Sect. 7. The contact
angle δ = π/2 is special. Geometers investigated the corresponding planar domains from an independent
viewpoint. We briefly review this material in the next section.

5. The Caustics Γπ/2 and Curves of Constant Width

To illustrate the preceding discussion, we will now study the question: Which billiard tables have the
caustic Γπ/2? Let Ω be a regular billiard table. Then Γπ/2 is a caustic if and only if any chord which
is perpendicular to ∂Ω at one of its ends, is also perpendicular to ∂Ω at the other end. The values of
the angle parameter at these points are α, α + π. Since the chord [P (α)P (α + π)] is perpendicular to
∂Ω at both end points, its length d(α) is the width of Ω in direction α. Moreover, the orthogonality of
[P (α)P (α + π)] and ∂Ω implies that d(α) = const. These curves and the domains that they bound are
known in geometry as the curves and domains of constant width [8]. Thus, a regular billiard table Ω has
the caustic Γπ/2 iff Ω is a domain of constant width.

We point out that our analysis assumes that ∂Ω is twice continuously differentiable. In particular, it
is not valid for domains of constant width with corners. The boundary of a famous example of such a
domain, the Reuleaux triangle [8], consists of three circular arcs of the same radius; it has corners at the
endpoints of the arcs. See Fig. 8. The Reuleaux triangle is not a regular billiard table.
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Fig. 8. Reuleaux triangle: a domain of constant width with corners

Corollary 3. Let Ω be a regular billiard table, and let ρ(·) be its radius of curvature. Then Γπ/2 is a caustic
for Ω iff we have the identity

ρ(α) + ρ(α + π) = const. (13)

Proof. Let cm,m ∈ Z, be the Fourier coefficients of ρ. By the proof of Theorem 1, Γπ/2 is a caustic iff

cm

[
sin (m−1)π

2

m − 1
− sin (m+1)π

2

m + 1

]
= 0

for all m > 1. For m = 2k this means 4kc2k/(4k2 − 1) = 0, yielding c2k = 0. For odd m the equation
holds for any cm. Thus, Ω has the caustic Γπ/2 iff the radius of curvature has the Fourier expansion of
the form

ρ(α) = c0 +
∑

modd
cmeimα. (14)

Equation (14) is equivalent to the identity ρ(α + π) + ρ(α) = 2c0. �

Remark 3. We point out that the identity Eq. (14) characterizes all billiard tables Ω with the caustic
Γπ/2, including the circular billiard table. By the discussion preceding Corollary 3, the width of any such
Ω is constant, and is equal to 2c0. Let |∂Ω| be the perimeter of Ω. If Ω has constant width, we denote it
by w(Ω). By the above argument, for a curve of constant width we have

ρ(α + π) + ρ(α) = w(Ω).

Integrating this equation and using that
∫
T

ρ(α)dα = |∂Ω|, we obtain the identity

π · w(Ω) = |∂Ω|. (15)

Note that we have used the regularity of ∂Ω to derive Eq. (15). In fact, it is valid for arbitrary curves
of constant width; it is called Barbier’s theorem. Another amusing fact about domains of constant width
is the Blaschke–Lebesgue theorem [8]. It says that amongst the domains of a fixed constant width the
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Reuleaux triangle has the smallest area. By the isoperimetric theorem, the disc has the biggest area. Let
Ω be any domain of constant width w; let |Ω| be the area of Ω. By an elementary calculation

π − √
3

2
w2 ≤ |Ω| ≤ π

4
w2.

The equalities take place only for the Reuleaux triangle and the disc.

6. Trigonometric Equations and a Family of Polynomials

We will now obtain quantitative information about the solutions of Eq. (10).

Lemma 3. Let n ≥ 1. There are polynomials Pn, Qn such that

tan nx =
Pn(tan x)
Qn(tan x)

. (16)

Polynomials Pn, Qn are uniquely determined by the recurrence relations

Pn+1(z) = Pn(z) + zQn(z), Qn+1(z) = Qn(z) − zPn(z) (17)

and the initial data P1(z) = z, Q1(z) = 1. The polynomial Pn (resp. Qn) is odd (resp. even). The degree
of each of the two polynomials is either n or n − 1, depending on the parity of n.

Proof. The formula

tan(x + y) =
tan x + tan y

1 − tan x tan y

in the special case y = nx yields

tan(n + 1)x =
tan nx + tan x

1 − tan nx tan x
.

The claims follow by induction on n. �

Remark 4. Polynomials Pn, Qn can be expressed in terms of the Chebyshev polynomials of the first and
the second kind. We will not pursue this approach here.

Proposition 4. The polynomials in Eq. (16) satisfy

− 2Pn(z) = in+1(z − i)n + (−i)n+1(z + i)n (18)

and

2Qn(z) = in(z − i)n + (−i)n(z + i)n. (19)

Proof. We rewrite Eq. (17) as [
Pn+1(z)
Qn+1(z)

]
=

[
1 z

−z 1

] [
Pn(z)
Qn(z)

]
.

The claims follow by the elementary algebra. �

Corollary 4. For n > 1 set

Rn(z) = −1
2

in [(nz + i)(z − i)n + (−1)n(nz − i)(z + i)n] . (20)

Let 0 < x < π/2, and set z = tan x. Then x ∈ Bn iff z is a positive root of the polynomial Rn.

Proof. By Proposition 2, Eq. (10), and Lemma 3, x ∈ Bn iff tan x = z > 0 satisfies Pn(z)−nzQn(z) = 0.
By Eqs. (18) and (19), Pn(z) − nzQn(z) = Rn(z). �
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7. Floating and Number Theory

We have reduced our investigation of Eq. (10) to a study of roots of the polynomials Rn. We now continue
to study these polynomials, and bring in some number theory.

7.1. Polynomials and Fractional Linear Transformations

The following lemma summarizes the immediate properties of polynomials Rn.

Lemma 4. Let n ≥ 1. Then the following holds:
(i) The polynomials Rn are real, odd polynomials;
(ii) The degree of Rn is equal to n + 1 for n even, and to n for n odd;
(iii) The highest coefficient of Rn is 2n for n even and ±1 for n odd;
(iv) The roots of Rn are real and simple, except for the zero root, which has multiplicity three.

Proof. Claims (i)–(iii) follow either from Rn(z) = Pn(z) − nzQn(z) or directly from Eq. (20). We will
prove claim (iv). Suppose n is even; set n = 2k. Then deg(Rn) = 2k + 1. By Eq. (20), Rn has at most
2k − 2 nonzero roots, counted with multiplicities. By claim 1 in Proposition 3 and Corollary 4, Rn has
k − 1 distinct positive roots. By (i), Rn has k − 1 distinct negative roots, hence the claim. The case of
odd n is similar, and we leave it to the reader. �

Let
[

a b
c d

]
be a nondegenerate matrix. We will use the notation

[
a b
c d

]
◦ z =

az + b

cz + d
.

Let A,A′ be nondegenerate matrices. We will write A ∼ A′ to mean that A′A−1 is a scalar matrix. Then
A ∼ A′ holds iff A ◦ z ≡ A′ ◦ z.

Proposition 5. Let n > 1. There is a 1-to-1 correspondence, preserving the multiplicities, between the
nonzero roots of Rn and the roots of the equation

ζn = (−1)n+1

[
n + 1 n − 1
n − 1 n + 1

]
◦ ζ, (21)

other than ζ = ±1.

Proof. By Eq. (20), we have Rn(z) = 0 iff(
z − i

z + i

)n

= (−1)n+1 nz − i

nz + i
. (22)

We recall a few well known facts. The fractional linear transformations

ζ =
[

1 −i
1 i

]
◦ z, z =

[
i i

−1 1

]
◦ ζ.

are inverse to each other; they induce a diffeomorphism of R ∪ ∞ onto the unit circle which sends the
natural orientation of the real axis to the counter clockwise orientation of the unit circle.

Setting Fn(z) = nz−i
nz+i , we rewrite Eq. (22) as

(F1(z))n = (−1)n+1Fn(z).

Setting F1(z) = ζ, z = F−1
1 (ζ), and using that[

n −i
n i

] [
i i

−1 1

]
=

[
ni + i ni − i
ni − i ni + i

]
∼

[
n + 1 n − 1
n − 1 n + 1

]
,

we obtain Eq. (21).
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We have proved that the transformation ζ =
[

1 −i
1 i

]
◦z induces a multiplicity preserving isomorphism

between the roots z of Rn such that F1(z) �= ∞ and the solutions ζ �= F1(∞) of Eq. (21). Using that
F1(0) = −1, F1(∞) = 1, and the information about the roots of Rn contained in Lemma 4, we obtain the
claim. �

Remark 5. Proposition 5 singles out the roots ζ = ±1 of Eq. (21). Observe that −1 is always a root of
multiplicity three for this equation, while 1 is a (simple) root iff n is odd. To explain this, we note that
−1 = F1(0), while 1 = F1(∞). Observe that 0 is a multiplicity three root of Rn; the appearance of ∞
as a “root” of Rn is due to the circumstance that in the beginning of the proof of Proposition 5 we have
put the equation Rn(z) = 0 in the form

(nz + i)(z − i)n = (−1)n+1(nz − i)(z + i)n. (23)

If n is odd, the leading terms in both sides of Eq. (23) have the same sign when z → ∞; if n is even, the
signs are opposite.

Equation (21) involves a rational function whose denominator is (n − 1)ζ + (n + 1). Getting rid of the
denominator and using the variable x = −ζ, we obtain an equivalent polynomial equation:

−(n − 1)xn+1 + (n + 1)xn − (n + 1)x + (n − 1) = 0.

The corollaries below are immediate from Proposition 5 and the preceding discussion.

Corollary 5. Let n > 1. Set

Sn(x) = (n − 1)
[
xn+1 − 1

] − (n + 1) [xn − x] . (24)

Then all roots of the polynomials Sn belong to the unit circle {|x| = 1}. The number 1 is a root of
multiplicity three. The number −1 is a simple root of Sn if n is odd, and Sn(−1) �= 0 if n is even. The
remaining roots of Rn are simple.

In what follows we will refer to the roots x �= ±1 of Sn as the complex roots.

Corollary 6. Let n > 1. The transformation z �→ x given by

x = −z − i

z + i

induces a 1-to-1 correspondence between the nonzero roots of the polynomial Rn and the complex roots of
the polynomial Sn. Moreover, this transformation sends the positive (resp. negative) roots of Rn to the
roots of Sn such that 	x > 0 (resp. 	x < 0).

7.2. Characterizing Billiard Tables with a Particular Constant Angle Caustic

Let 0 < δ < π, δ �= π/2, be an element in A. We will analyze the set of billiard tables with the con-
stant angle caustic Γδ. Our results hinge on certain number theoretic claims, which for the time being, we
cannot prove. In view of overwhelming evidence in favor of these claims, we will state them as conjectures.

Conjecture 1. Let m,n > 1 be distinct integers; let Sm, Sn be the corresponding polynomials in Eq. (24).
Then their sets of complex roots are disjoint.

Conjecture 2. Let m,n > 1 be distinct integers. Then equations tan mx = m tan x, tan nx = n tan x have
no common solutions in (0, π/2).

By Sects. 6 and 7.1, these conjectures are equivalent. For reader’s convenience, we outline a proof.
Recall that Bk denotes the set of roots of the equation tan kx = k tan x in (0, π/2). By Lemma 3, Prop-
osition 4, and Corollary 4, the set {tan x : x ∈ Bk} is the set of positive roots of the polynomial Rk.
See Eq. (20). Corollary 6 provides a fractional linear transformation that sends the positive roots of
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Rk, k > 1, to the roots of Sk in the semi-circle {|z| = 1,	z > 0}. Now the information about the roots of
Sk contained in Corollary 5 implies the claim.

In view of the equivalence of Conjectures 1 and 2, from now on we will simply refer to them as the
Conjecture.

We will say that a solution x is nontrivial if tanx �= 0. The following proposition lends support to the
Conjecture.

Proposition 6. Let n > 1. Then the following holds.
1. The system

tan nx = n tan x, tan(n + k)x = (n + k) tan x (25)

has no nontrivial solutions for k = 1, 2.
2. The system

tan nx = n tan x, tan knx = kn tan x (26)

has no nontrivial solutions for k = 2, 3.
3. The systems

tan nx = n tan x, tan(2n ± 1)x = (2n ± 1) tan x (27)

have no nontrivial solutions.

Proof. We have

tan(n + k)x =
tan nx + tan kx

1 − tan nx tan kx
.

Substituting this into Eq. (25) and using that tanx �= 0, we obtain 1 + n(n + 1) tan2 x = 0 in the case
k = 1, and (n + 1)2 tan2 x = 0 in the case k = 2. This proves claim 1.

We have

tan 2nx =
2 tan nx

1 − tan2 nx
, tan 3nx =

3 tan nx − tan3 nx

1 − 3 tan2 nx
.

Substituting these identities into Eq. (26), and assuming tanx �= 0, we obtain 1 − n2 tan x =
1, 8n2 tan x = 0 if k = 2, k = 3 respectively. This proves claim 2.

Equation (27) and the identity

tan(2n ± 1)x =
tan 2nx ± tan x

1 ∓ tan 2nx tan x

yield the relationship n3 ± 2n2 + n = 0 which has no solutions n > 1. �

Remark 6. A refinement of the above argument yields that the systems

tan nx = n tan x, tan(3n ± 1)x = (3n ± 1) tan x

do not have nontrivial solutions as well. The proof is rather long and we do not reproduce it here.

Proposition 6 and Remark 6 yield particular families of pairs of integers m �= n such that the system
tan mx = m tan x, tan nx = n tan x has no nontrivial solutions. This provides some evidence supporting
our conjecture. Other supporting evidence, which we will now describe, comes from the work [9].

Let n ≥ 4. Set S̃n(x) = Sn(x)/(x − 1)3(x + 1) if n is odd and S̃n(x) = Sn(x)/(x − 1)3 if n is even.
By Corollary 5, S̃n are polynomials with integer coefficients; their roots are simple and belong to the
unit circle. Let X be a property of natural numbers. Let N(X) ⊂ N be the set of numbers having this
property. We say that property X holds for almost all positive integers if N(X) ⊂ N is a subset of density
one. A property that holds for almost all pairs of positive integers is defined analogously.

The work [9] puts forward several conjectures about irreducibility of polynomials over Q. It conjec-
tures, in particular, that polynomials S̃n are irreducible. See Conjecture 3 in [9]. Let m �= n be natural
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numbers. We will say that the pair m,n satisfies the Conjecture if the sets of complex roots of the
polynomials Sm, Sn are disjoint.

Proposition 7. The Conjecture holds for almost all pairs of positive integers.

Proof. By the preceding discussion, it suffices to show that for almost all pairs m �= n the root sets of
S̃m, S̃n are disjoint. Let I ⊂ N be the set of integers k such that S̃k is irreducible. Let J ⊂ I × I be the
set of distinct pairs. By Theorem 4 in [9], I ⊂ N is a set of density one. Thus, the sets J ⊂ I × I ⊂ N × N

have density one. But for pairs (m,n) ∈ J the polynomials S̃m, S̃n have disjoint roots. �
We will now briefly digress into the general Birkhoff billiard. Let Ω be any Birkhoff billiard table; let

F : Z → Z be the billiard map on Ω. Let Γ ⊂ Z be an invariant curve of the form θ = h(s). Thus, Γ
is homeomorphic to the standard circle T = {0 ≤ α ≤ 2π}. The circle T carries the classical family of
rotations Rρ : α �→ α + 2πρ mod 2π, 0 ≤ ρ < 1. If F |Γ is conjugate to Rρ, we say that Γ is a rotational
invariant circle with the rotation number ρ.

By Poincaré, the transformation F |Γ always has a rotation number ρ(Γ). The general Γ, however,
is not a rotational invariant circle. If ρ(Γ) is irrational, then, under mild regularity assumptions, Γ is
an invariant circle with the rotation number ρ(Γ). Thus, there is a diffeomorphism of Γ onto the stan-
dard circle that conjugates F |Γ and Rρ(Γ). By [13,33] every sufficiently regular Ω has a large family of
rotational invariant circles Γ with irrational ρ(Γ). On the other hand, there is no theorem that guarantees
the existence of invariant circles Γ with rational ρ(Γ). Several results in the billiard literature suggest
that such invariant curves are extremely rare [28,30].4

Let 0 < x < π/2 satisfy Eq. (10). Then, by Theorem 2 and the proof of Proposition 1, there is a
continuous family of billiard tables Ωr

5 with invariant circles Γ such that ρ(Γ) = x/π. In view of the
above, the author conjectured that the numbers x/π are irrational [20,26].6 The work of Van Cyr [12]
corroborated the conjecture.

Theorem 3. Van Cyr [12].7 Let x ∈ (0, π/2) satisfy tan nx = n tan x for some n > 1. Then x/π is
irrational.

8. Further Applications to the Billiard and Floating

We will now derive applications of the preceding material to the billiard problem and to the capillary
floating. Throughout this section we assume the validity of the Conjecture.

8.1. Billiard Tables with Constant Angle Caustics

In Sect. 4 we called billiard tables Ω1,Ω2 ⊂ R
2 equivalent if there is a homothety h : R

2 → R
2 such that

Ω1 = h(Ω2). To simplify the terminology, we will now say that Ω1,Ω2 are equal up to a homothety.

Proposition 8. Let A ⊂ (0, π) be the set defined in Sect. 4. Let δ ∈ A \ {π/2}, and let Ω ⊂ R
2 be a

non-circular, regular billiard table with the caustic Γδ. Then there is a unique integer n ≥ 4 and a unique
parameter 0 < τ < 1 such that up to a homothety Ω = Ωn,τ , where Ωn,τ is given by Eqs. (11), (12).

Proof. Let ρ(α) be the radius of curvature function for ∂Ω. By Theorem 1, there are unique constants
a, b, c satisfying 0 < a2 + b2 < c such that ρ(α) = c + a cos nα + b sin nα. The claim now follows from
Theorem 2. �
Theorem 4. Let Ω ⊂ R

2 be a noncircular, regular billiard table. The following statements are equivalent.

4See, however, [5] for a different viewpoint.
5In fact, the one-parameter family Ωn,τ , 0 ≤ τ < 1, if the Conjecture holds.
6The work [26] is a preliminary version of the present paper.
7Van Cyr proved this theorem a few years ago; he was then an undergraduate student at SUNY Buffalo.
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1. The table Ω has a caustic Γδ, δ �= π/2.
2. There is n > 3 such that the Fourier coefficients of the radius of curvature ρ(·) of ∂Ω satisfy

(i) cn �= 0; (ii) ck = 0 for all positive k �= n.
3. There is a unique n > 3 and a unique 0 < τ < 1 such that up to a homothety Ω = Ωn,τ .

Proof. Proposition 8 proves the implication 1 ⇒ 3, while 2 ⇒ 1 is a byproduct of Theorem 2. The
implication 3 ⇒ 2 is obvious. �

Corollary 7. Let Ω ⊂ R
2 be a regular billiard table. Suppose that Ω has a constant angle caustic Γδ where

δ �= π/2 and δ/π is rational. Then Ω is a disc.

Proof. The claim is immediate from Theorems 3 and 2, claim 3. �

Theorem 5. There is a dense countable set R ⊂ (0, 1) of irrational numbers such that the following claims
hold.

1. For every ρ ∈ R there is a one-parameter family {Ωτ : 0 ≤ τ < 1} of real analytic billiard tables
having a constant angle caustic with the rotation number ρ. Every regular billiard table having a
constant angle caustic with the rotation number ρ is homothetic to a unique table Ωτ .

2. Let ρ ∈ (0, 1)\R. Suppose that a regular billiard table Ω has a constant angle caustic with the rotation
number ρ. (i) If ρ = 1/2 then Ω has constant width. (ii) If ρ �= 1/2 then Ω is a disc.

Proof. Claim 1 is immediate from Theorem 4 and Corollary 7. Claim 2 follows by combining these state-
ments with Theorem 1. �

8.2. Two-Dimensional Capillary Floating in Neutral Equilibrium

We will now apply the preceding material to the capillary floating.

Theorem 6. Let Ω ⊂ R
2 be a regular, compact, convex domain. Then the following holds.

1. Suppose that Ω is not a disc. Then Ω floats in neutral equilibrium at any orientation with the contact
angle γ �= π/2 if and only if there is n > 3 and 0 < τ < 1 such that Ω is homothetic to the domain
Ωn,τ given by Eqs. (11), (12). The numbers n, τ are uniquely determined by Ω.

2. If Ω floats in neutral equilibrium at any orientation with the contact angle γ �= π/2 then γ/π is
irrational.

3. There is a countable dense set A ⊂ (0, π) containing π/2 and symmetric about this point such that
the following holds:

If Ω floats in neutral equilibrium at any orientation with the contact angle γ ∈ (0, π) \A then Ω is a disc.

Proof. The claims are the counterparts of statements in Theorems 4, 5, and Corollary 7. �
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[36] The Scottish Book. Mathematics from the Scottish Café. In: Selected papers presented at the Scottish Book Conference

held at North Texas State University. Birkhäuser, Boston (1981)
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