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CH-1015 Lausanne, Switzerland, and

Theory Division, CERN

CH-1211 Geneva 23, Switzerland

E-mail: mikhail.shaposhnikov@epfl.ch

Abstract: Sterile neutrinos with masses in the keV range are considered to be a viable

candidate for warm dark matter. The rate of their production through active-sterile neu-

trino transitions peaks, however, at temperatures of the order of the QCD scale, which

makes it difficult to estimate their relic abundance quantitatively, even if the mass of the

sterile neutrino and its mixing angle were known. We derive here a relation, valid to all

orders in the strong coupling constant, which expresses the production rate in terms of the

spectral function associated with active neutrinos. The latter can in turn be expressed as

a certain convolution of the spectral functions related to various mesonic current-current

correlation functions, which are being actively studied in other physics contexts. In the

naive weak coupling limit, the appropriate Boltzmann equations can be derived from our

general formulae.

Keywords: Neutrino Physics, Cosmology of Theories beyond the SM, Thermal Field

Theory, Nonperturbative Effects.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep062006053/jhep062006053.pdf

mailto:asaka@tuhep.phys.tohoku.ac.jp
mailto:laine@physik.uni-bielefeld.de
mailto:mikhail.shaposhnikov@epfl.ch
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
6
)
0
5
3

Contents

1. Introduction 1

2. General formula for the sterile neutrino production rate 4

2.1 Notation 4

2.2 Derivation of the master equation 5

3. Hadronic contribution to the active neutrino spectral function 8

3.1 Notation 8

3.2 General structure of the active neutrino spectral function 10

3.3 Relation of active neutrino and mesonic spectral functions 11

3.4 Reduction of mesonic spectral functions 14

3.5 Perturbative limit 15

4. Conclusions and outlook 18

A. Basic relations for bosons 20

B. Basic relations for fermions 22

C. An alternative derivation of eq. (2.21) 23

1. Introduction

The problem of explaining the nature of Dark Matter is a central one for cosmology. The

most popular attempt is to postulate the existence of a relatively heavy Cold Dark Matter

(CDM) particle related, perhaps, to softly broken supersymmetry. However, other particle

physics candidates can also be envisaged, and there has been a recent revival particularly

in Warm Dark Matter (WDM) scenarios.

While WDM is just an alternative to CDM from the Dark Matter point of view,

the issue becomes quite intriguing when other physics considerations are added to the

picture. In particular, WDM could be realised through the existence of right-handed

sterile neutrinos [1] (see also ref. [2]). This possibility may then lead to some astrophysical

applications [3]. Moreover, if there are three sterile neutrinos in total, one for each known

generation, then they can be combined to a minimal theoretical framework, dubbed the

νMSM in ref. [4], and used to explain also the known properties of neutrino oscillations [4]

and baryogenesis [5, 6]. A phenomenologically successful implementation can be obtained

provided all three right-handed neutrinos have masses smaller than the electroweak scale.

The role of WDM is played by the lightest right-handed neutrino, whereas the two other
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ones should have masses in the range O(1−20) GeV and be very degenerate to produce the

observed baryon asymmetry [6]. In addition, an extension of the νMSM by a real scalar

field, inflaton, allows to incorporate inflation [7].

Apart from its mass, Ms, the WDM neutrino is also characterised by its mixing an-

gle with active neutrinos, θ. At present the strongest observational constraints on Ms

and θ come from two sides: structure formation in the form of Lyman-α forest observa-

tions imposes a stringent lower limit on Ms [8, 9], while X-ray constraints exclude the

region of having simultaneously a “large” Ms and θ [10]–[14]. More precisely, if the aver-

age momentum of sterile neutrinos at temperatures of a few MeV coincides with that of

active neutrinos then, according to ref. [9], the WDM neutrino cannot be lighter than

Ms ' 14 keV. For masses in this range the mixing angle cannot exceed θ ' 2.9 ×
10−3 (1 keV/Ms)

5/2 [13].

In this corner of the parameter space the interactions of sterile neutrinos with the par-

ticles of the Minimal Standard Model (MSM) are so weak that the sterile neutrinos cannot

equilibrate in the Early Universe via active-sterile transitions [1]. Therefore, information

about initial conditions does not get lost; initial conditions do in general play a role for

the current abundance. Evidently, it would be convenient to fix the initial conditions at

some temperature low enough such that only the νMSM degrees of freedom play a role.

Apart from initial conditions, one also has to fix the values of all nearly conserved quantum

numbers in the MSM, such as the lepton and baryon asymmetries. Alternatively, one can

specify the physics beyond the νMSM and thus determine the initial conditions dynami-

cally; an example of such a computation can be found in ref. [7], where the main source of

sterile neutrino production was associated with inflation.

One can imagine circumstances, however, where the initial conditions only play a

subdominant role. In this case the production mechanism of the sterile neutrino WDM can

be attributed to active-sterile neutrino mixing, as in the Dodelson-Widrow scenario [1].

The requirements for this situation can be formulated as follows: suppose that the initial

condition is that the concentration of sterile neutrinos is zero (which is possible if the

interactions of sterile neutrinos with all particles beyond the νMSM such as the inflaton

are negligible) and that there are no significant lepton asymmetries (lepton asymmetries

corresponding to a chemical potential µ/T & 10−3 would play an important role in sterile

neutrino production [15]). Suppose also that the two heavier sterile neutrinos, present in

the νMSM, are heavy enough so that their decays in the Early Universe do not produce

any entropy [16]. Then the WDM abundance can be expressed as a function of the mass

Ms and the angle θ [1, 10, 17, 18]. Matching the observed abundance one gets a relation

between Ms and θ, which can be confronted with the observational bounds mentioned

above.

Approximate Ms-θ relations derived along these lines have been presented in Refs. [1,

10, 17, 18]. According to the most recent analysis [18],

θ ≈ 1.3 × 10−4

(

1 keV

Ms

)0.8

, (1.1)

where a dark matter abundance ΩDM ≈ 0.22 and a QCD crossover transition temperature
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TQCD ≈ 170 MeV have been inserted. If true, the combination of the Lyman-α bounds [9]

and X-ray bounds [13] mentioned above rules out the Dodelson-Widrow scenario. How-

ever, other production mechanism such as resonant production due to large lepton asym-

metries [15] (see also ref. [19]) or due to inflaton interactions [7] are feasible [16].

Due to the importance of the problem our aim here is to reanalyse the Ms-θ relation

within the Dodelson-Widrow scenario. In fact, a computation of the sterile neutrino pro-

duction rate represents a very non-trivial theoretical challenge. The reason is that the

region of temperatures at which sterile neutrinos are produced most intensely is [1]

T ∼ 150 MeV

(

Ms

1 keV

)
1

3

. (1.2)

At higher temperatures their production is suppressed because of medium effects [20].

The temperature in eq. (1.2) is very close to the pseudocritical temperature of the QCD

crossover. Therefore, neither the dilute hadronic gas approximation nor the weakly inter-

acting quark-gluon plasma picture is expected to provide for an accurate description.

The presence of strongly interacting hadrons at these temperatures leads to two sources

of uncertainties. A well-known one is related to the hadronic equation of state, needed for

the time-temperature relation in the expanding Universe, entering the sterile neutrino

production equation. Unfortunately, experiments with heavy ion collisions cannot directly

measure the equation of state of hadronic matter. In addition, present lattice simulations

with light dynamical quarks involve uncontrolled systematic uncertainties, such as the

absence of a continuum limit extrapolation. In other words, the equation of state of QCD

is only known approximately in this temperature range and contains significant systematic

uncertainties (for a recent discussion, see ref. [21]).

At the same time, the equation of state does matter in the computation of the sterile

neutrino abundance. As has been mentioned already in ref. [1] and elucidated further in

Refs. [17], even the purely leptonic contribution to the abundance depends significantly on

the effective number of massless degrees of freedom, g∗, which in turn changes dramatically,

from about 60 down to about 20, when the quark-gluon plasma cools to a hadronic gas.

However, neither the uncertainties of the equation of state, nor the subsequent uncertainties

in the Ms-θ relation, have been exhaustively investigated in these works.

There is also a second type of a hadronic uncertainty, which has a dynamical char-

acter. Sterile neutrinos can be produced in reactions of two types, the first containing

leptons only and the second having hadrons in the initial state. The hadronic reactions

were omitted in refs. [1, 10]. Processes with quarks were mentioned in ref. [17] (not in

ref. [18]), but without an explanation of how they were treated in the QCD crossover

region.

It is this second uncertainty that is the focus of the present paper. Our goal is to

set up a general formalism for attacking it. In a later work, a numerical analysis of the

Ms-θ relation and its uncertainties will be presented. More concretely, the current number

density of the WDM neutrinos in the Dodelson-Widrow scenario is given by θ2F + O(θ4).

In this paper we derive an expression which allows to relate the coefficient F to a certain
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equilibrium Green’s function, the so-called active neutrino spectral function, defined within

the MSM, while all dependence on the parameters of the νMSM appears as the prefactor

θ2.

It is appropriate to stress that analogous relations exist in other contexts as well.

For instance, it can be shown that the photon spectral function computed within the

MSM determines the production rate of on-shell photons and dilepton pairs from strongly

interacting systems such as colliding heavy nuclei [22], and the production rate of active

neutrino pairs from hot/dense astrophysical environments such as the cores of neutron

stars [23]. Nevertheless, we are not aware of the existence of such relations in the present

context, so we want to discuss their derivation in a hopefully pedagogic manner.

Given the Green’s function, it should still be evaluated. As we have already mentioned,

this turns out to be a very difficult task, since the sterile neutrino production rate peaks at

temperatures of the order of the QCD scale. In this temperature range strong interactions

play a dominant role, and perturbative methods fail. In the second part of our paper, we

thus show how the active neutrino spectral function can be related to various vector and

axial-vector current-current correlation functions defined within high temperature QCD.

Such objects have previously been studied with a variety of methods, such as chiral pertur-

bation theory, QCD sum rules, lattice QCD, and resummed weak-coupling perturbation

theory, and also possess independent physics applications, particularly in connection with

the photon and dilepton pair production rate computations mentioned above.

The plan of this paper is the following. In section 2 we derive the expression alluded

to above, expressing the sterile neutrino production rate in terms of the spectral function

of active neutrinos, computable within the MSM. In section 3 we relate the hadronic

contribution to the active neutrino spectral function to mesonic current-current correlation

functions, which can be defined within QCD. We also show how the result reduces to certain

Boltzmann equations in the naive (unresummed) weak-coupling limit. We conclude and

outline future prospects in section 4. The three appendices contain certain basic definitions

for the various bosonic and fermionic Green’s functions that appear in our study, and an

alternative derivation for section 2.

2. General formula for the sterile neutrino production rate

2.1 Notation

It is a matter of convention whether the right-handed neutrinos are represented as Weyl,

right-handed Dirac, or Majorana fermions. Choosing here the last option, the Minkowskian

Lagrangian of νMSM can be written as

L =
1

2
¯̃NIi /∂ ÑI −

1

2
MI

¯̃NIÑI − FαI L̄αφ̃ aRÑI − F ∗
αI

¯̃NI φ̃
†aLLα + LMSM , (2.1)

where ÑI are Majorana spinors, repeated indices are summed over, MI are Majorana

masses that we have chosen to be real in this basis, Lα are the weak interaction eigenstates

of the active lepton doublets, FαI are elements of a 3×3 complex Yukawa matrix, φ̃ = iτ2φ
∗

is the conjugate Higgs doublet, and aL ≡ (1− γ5)/2, aR ≡ (1 + γ5)/2 are chiral projectors.
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After electroweak symmetry breaking, 〈φ̃〉 = (v/
√

2, 0) , we define the matrix

(MD)αI ≡ vFαI√
2

, (2.2)

where v ' 246 GeV. The various neutrino fields, active and sterile, then couple to each

other, and diagonalising the mass matrix we can define mass eigenstates in the usual way.

However, a sterile neutrino of type I couples to an active neutrino mass eigenstate of type

a with a very small angle only,

θIa '
3

∑

α=1

(M †
D)Iα

MI
Uαa , (2.3)

where Uαa is the mixing matrix between the active neutrino interaction and mass bases. As

mentioned above, the phenomenologically relevant part of the parameter space corresponds

to values θ ¿ 1. Therefore, the sterile neutrino interaction eigenstate of type I is to a

very good approximation also a sterile neutrino mass eigenstate, and we can ignore the

distinction in the following. To fix the conventions, I = 1 corresponds to the lightest

sterile neutrino, contributing to warm dark matter.

The Green’s functions that we will need involve a lot of sign and other conventions

whose definitions are unfortunately not unique in the literature. We therefore explicitly

state our conventions in Appendices A and B, for Green’s functions made out of bosonic

and fermionic operators, respectively. Our metric convention is (+−−−).

2.2 Derivation of the master equation

According to our assumption, the concentration of sterile neutrinos was zero at very high

temperatures, T À 1 GeV. Moreover, because of the smallness of its Yukawa coupling,

the lightest sterile neutrino never equilibrated. In this section we show that these two

facts allow us to express the production rate of this neutrino through a certain well-defined

equilibrium Green’s function within the MSM. The consideration below is very general and

uses only the basic principles of thermodynamics and quantum field theory. In particular,

it does not require any solution of kinetic equations, nor a discussion of coherence or its

loss due to collisions, or the like.

The general way we proceed with the derivation is equivalent to how fluctuation-

dissipation relations, or linear response formulae, are usually derived (see, e.g., Refs. [24,

25]). There exists, however, also an alternative derivation, which makes more direct contact

with particle states and the related transition matrix elements and which is also somewhat

shorter. The price is that this derivation appears to be slightly less rigorous. Nevertheless,

the end result is identical, so we present the alternative derivation in Appendix C.

We disregard first the Universe expansion, which can be added later on (cf. eq. (2.22)).

Let ρ̂ be the density matrix for νMSM, incorporating all degrees of freedom, and Ĥ the

corresponding full Hamiltonian operator. Then the equation for the density matrix is

i
dρ̂(t)

dt
= [Ĥ, ρ̂(t)] . (2.4)
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We now split Ĥ in the form

Ĥ = ĤMSM + ĤS + Ĥint , (2.5)

where ĤMSM is the complete Hamiltonian of the MSM, ĤS is the free Hamiltonian of

sterile neutrinos, and Ĥint, which is proportional to the sterile neutrino Yukawa couplings,

contains the interactions between sterile neutrinos and the particles of the MSM. To find

the concentration of sterile neutrinos, one has to solve eq. (2.4) with some initial condition.

Following [1], we will assume that the initial concentration of sterile neutrinos is zero, that

is

ρ̂(0) = ρ̂MSM ⊗ |0〉〈0| , (2.6)

where ρ̂MSM = Z−1
MSM exp(−βĤMSM), β ≡ 1/T , is the equilibrium MSM density matrix at

a temperature T , and |0〉 is the vacuum state for sterile neutrinos. The physical meaning

of eq. (2.6) is clear: it describes a system with no sterile neutrinos, while all MSM particles

are in thermal equilibrium.

Considering now Ĥ0 = ĤMSM +ĤS as a “free” Hamiltonian, and Ĥint as an interaction

term, one can derive an equation for the density matrix in the interaction picture, ρ̂I ≡
exp(iĤ0t)ρ̂ exp(−iĤ0t), in the standard way:

i
dρ̂I(t)

dt
= [ĤI(t), ρ̂I(t)] . (2.7)

Here, as usual, ĤI = exp(iĤ0t)Ĥint exp(−iĤ0t) is the interaction Hamiltonian in the inter-

action picture. Now, perturbation theory with respect to ĤI can be used to compute the

time evolution of ρ̂I; the first two terms read

ρ̂I(t) = ρ̂0 − i

∫ t

0
dt′

[

ĤI(t
′), ρ̂0

]

+ (−i)2
∫ t

0
dt′

∫ t′

0
dt′′

[

ĤI(t
′),

[

ĤI(t
′′), ρ̂0

]]

+ · · · , (2.8)

where ρ̂0 ≡ ρ̂(0) = ρ̂I(0). Note that perturbation theory with ĤI breaks down at a certain

time t ' teq due to so-called secular terms. After teq sterile neutrinos enter thermal

equilibrium and their concentration needs to be computed by other means. For us t ¿ teq
and perturbation theory works well.

We are interested in the distribution function of the sterile neutrinos. It is associated

with the operator
dN̂I

d3x d3q
≡ 1

V

∑

s=±1

â†I;q,sâI;q,s , (2.9)

where â†I;q,s is the creation operator of a sterile neutrino of type I, momentum q, and spin

state s, normalised as

{âI;p,s, â
†
J ;q,t} = δ(3)(p − q)δIJδst , (2.10)

and V is the volume of the system. Then the distribution function dNI/d
3xd3q (number

of sterile neutrinos of type I per d3xd3q) is given by

dNI(x,q)

d3xd3q
= Tr

[

dN̂I

d3xd3q
ρ̂I(t)

]

. (2.11)
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One can easily see that the first term in eq. (2.8) does not contribute in eq. (2.11) since

ĤI is linear in â†I;q,s and âI;q,s. Thus, we get that to O(θ2) the rate of sterile neutrino

production reads

dNI(x,q)

d4xd3q
= − 1

V
Tr

{

∑

s=±1

â†I;q,sâI;q,s

∫ t

0
dt′ [ĤI(t), [ĤI(t

′), ρ̂0]]

}

. (2.12)

For small temperatures T ¿ MW , the Higgs field in ĤI can safely be replaced through

its vacuum expectation value, so that eqs. (2.1), (2.2) imply

ĤI =

∫

d3x
[

(MD)αI ˆ̄ναaRN̂I + (M∗
D)αI

ˆ̄N IaLν̂α

]

, (2.13)

where now N̂I is a Majorana spinor field operator. The N̂I can be treated as free on-shell

field operators and can hence be written as

N̂I(x) =

∫

d3p
√

(2π)32p0

∑

s=±1

[

âI;p,su(I;p, s)e−iP ·x + â†I;p,sv(I;p, s)eiP ·x
]

, (2.14)

ˆ̄N I(x) =

∫

d3p
√

(2π)32p0

∑

s=±1

[

â†I;p,sū(I;p, s)eiP ·x + âI;p,sv̄(I;p, s)e−iP ·x
]

, (2.15)

where we assumed the normalization in eq. (2.10), and p0 ≡ E
(I)
p ≡

√

p2 + M2
I , P ≡

(p0,p). The spinors u, v satisfy the completeness relations
∑

s u(I;p, s)ū(I;p, s) = /p +MI ,
∑

s v(I;p, s)v̄(I;p, s) = /p − MI , and their Majorana character requires that u = Cv̄T ,

v = CūT , where C is the charge conjugation matrix. Inserting the free field operators into

eq. (2.13), we can rewrite it as

ĤI =

∫

d3x

∫

d3p
√

(2π)32p0

∑

s=±1

[

â†I;p,s ĴI;p,s(x) eiP ·x + Ĵ†
I;p,s(x) âI;p,s e−iP ·x

]

, (2.16)

where

ĴI;p,s(x) ≡ −(MD)αI ˆ̄να(x)aRv(I;p, s) + (M∗
D)αI ū(I;p, s)aLν̂α(x) . (2.17)

It remains to take the following steps:

(i) We insert eq. (2.16) into eq. (2.12) and remove the sterile neutrino creation and

annihilation operators, by making use of eq. (2.10).

(ii) This leaves us with various types of two-point correlators of the active neutrino field

operators. We now note that correlators of the type 〈 ˆ̄νβ(x′) ˆ̄να(x)〉 and 〈ν̂β(x′)ν̂α(x)〉,
where 〈. . .〉 ≡ Tr[ρ̂MSM(. . .)] and we have generalised the notation so that α, β incor-

porate also the Dirac indices, vanish, since lepton numbers are conserved within the

MSM.

(iii) The non-vanishing two-point functions contain the spinors u, v in a form where the

standard completeness relations mentioned above can be used. The mass terms MI

that are induced this way get projected out by aL, aR.
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(iv) Introducing the notation in eqs. (B.1), (B.2), the remaining two-point correlator can

be written as

〈ν̂α(x′) ˆ̄νβ(x) + ˆ̄νβ(x′)ν̂α(x)〉 =

∫

d4P

(2π)4
e−iP ·(x−x′)

[

Π>
αβ(−P ) − Π<

αβ(P )
]

. (2.18)

There is another term with the same structure but with x ↔ x′.

(v) It remains to carry out the integrals over the space and time coordinates. Taking the

limit t → ∞, they yield

lim
t→∞

∫

d3x

∫

d3x′

∫ t

0
dt′

[

ei(Q−P )·(x−x′) + ei(P−Q)·(x−x′)
]

= V (2π)4δ(4)(P − Q) ,

(2.19)

which allows to cancel 1/V from eq. (2.12) and remove P -integration from eq. (2.18).

As a result of all these steps, we obtain

dNI(x,q)

d4xd3q
=

1

(2π)32q0
(M∗

D)αI(MD)βI Tr
{

/QaL

[

Π>
αβ(−Q) − Π<

αβ(Q)
]

aR

}

, (2.20)

where we have returned to the convention that α, β label generations, and have expressed

the Dirac part through a trace. Inserting eq. (B.8); making use of the fact that 1 −
nF(−q0) = nF(q0), where nF(x) ≡ 1/[exp(βx) + 1]; and observing that lepton generation

conservation within the MSM restricts the indices α, β to be equal, we finally obtain the

master relation

dNI(x,q)

d4xd3q
= R(T,q) ≡ 2nF(q0)

(2π)32q0

3
∑

α=1

|MD|2αI Tr
{

/QaL

[

ραα(−Q) + ραα(Q)
]

aR

}

, (2.21)

where ρ is called the spectral function (eq. (B.3)). We stress again that this relation is valid

only provided that the number density of sterile neutrinos created is much smaller than

their equilibrium concentration, which however is always the case in the phenomenologically

interesting part of the parameter space, at least for I = 1.

In an expanding Universe, with a Hubble rate H, the physical momenta redshift as

q(t) = q(t0) a(t0)/a(t), where a(t) is the scale factor. This implies that the time derivative

gets replaced with d/dt = ∂/∂t − Hqi∂/∂qi [26], and eq. (2.21) becomes

[

∂

∂t
− Hqi

∂

∂qi

]

dNI(x,q)

d3xd3q
= R(T,q) . (2.22)

3. Hadronic contribution to the active neutrino spectral function

3.1 Notation

As stated by eq. (2.21), we need to estimate the active neutrino spectral function within the

MSM. Given that higher-order corrections can be important, this task has to be consistently

formulated within finite-temperature field theory. There are in principle two ways to go
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forward, the real-time and the imaginary-time formalisms. We follow here the latter since

it can be set up also beyond perturbation theory.

Within the imaginary-time formalism, the spectral function can be obtained through

a certain analytic continuation of the Euclidean active neutrino propagator. With the

conventions specified in Appendix B, we denote the Euclidean propagator by ΠE
αβ(q̃0,q)

(cf. eq. (B.7)). Carrying out an analytic continuation, we define

ΠE
αβ(−i[q0 ± i0+],q) ≡ ReΠR

αβ(q0,q) ± i Im ΠR
αβ(q0,q) , (3.1)

where ΠR
αβ is called the retarded Green’s function (cf. eq. (B.4)). The relation shown in

eq. (3.1) follows from the spectral representations in eqs. (B.9), (B.11). Note that the

imaginary part in eq. (3.1) is defined as the discontinuity across the real axis:

Im ΠR
αβ(q0,q) ≡ 1

2i
Disc ΠE

αβ(−iq0,q) (3.2)

≡ 1

2i

[

ΠE
αβ(−i[q0 + i0+],q) − ΠE

αβ(−i[q0 − i0+],q)
]

(3.3)

= ραβ(q0,q) , (3.4)

where the last step introduced the spectral function (eq. (B.3)) and made use of eq. (B.12).

As the imaginary-time neutrino propagator is time-ordered by construction (cf. eq. (B.7)),

we can use functional integrals for its determination, whereby operator labels can be

dropped from the fields from now on.

In order to compute the Euclidean propagator, from which the spectral function follows

through eqs. (3.1), (3.4), we need to define the Euclidean theory. Given that we are

interested in low temperatures, we can work within the Fermi-model. The interactions of

the active neutrinos with the hadronic degrees of freedom on which we concentrate in this

paper, are then contained in the Lagrangian

LE = 2
√

2GF

(

ν̄αγ̃µaLlα H̃W
µ + H̃W †

µ l̄αγ̃µaLνα +
1

2
ν̄αγ̃µaLνα H̃Z

µ

)

, (3.5)

H̃W
µ = d̄′βB γ̃µaL uβB , H̃W †

µ = ūβB γ̃µaL d′βB , (3.6)

H̃Z
µ = ūβB γ̃µ

(

1

2
− 4xW

3
− γ5

2

)

uβB + d̄βB γ̃µ

(

−1

2
+

2xW

3
+

γ5

2

)

dβB , (3.7)

where α, β are generation indices, B is a colour index, xW ≡ sin2 θW, and the Fermi-

constant reads GF = g2
w/4

√
2m2

W . All fermions are Dirac fields. The fields d′βB are related

to the mass eigenstates dβB with the usual CKM matrix. The Euclidean γ-matrices are

defined by γ̃0 ≡ γ0, γ̃i ≡ −iγi, and satisfy γ̃†
µ = γ̃µ, {γ̃µ, γ̃ν} = 2δµν . We have defined

γ5 = γ̃0γ̃1γ̃2γ̃3 = iγ0γ1γ2γ3. Repeated µ-indices are summed over, and that they are both

down reminds us of the fact that we are in the Euclidean space-time. We also denote

/̃Q ≡ q̃µγ̃µ and note that if we carry out the Wick-rotation q̃0 → −iq0 (cf. eq. (3.1)) and

simultanously decide to express the result in terms of Minkowskian rather than Euclidean

Dirac-matrices, then

i /̃Q → /Q ≡ qµγµ . (3.8)
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3.2 General structure of the active neutrino spectral function

Suppose now that we compute the full Euclidean neutrino self-energy within the MSM.

Since only left-handed neutrinos experience interactions in the MSM, we expect the corre-

sponding Euclidean action to have the structure

SE =
∑

∫

Q̃f

3
∑

α=1

ν̄α(Q̃)aR[i /̃Q + i /̃Σ αα(Q̃)]aLνα(Q̃) , (3.9)

where we have defined the Fourier transforms as να(x̃) =
∫

Q̃ exp(iQ̃ · x̃)να(Q̃), ν̄α(x̃) =
∫

Q̃ exp(−iQ̃ · x̃)ν̄α(Q̃). To keep the future expressions more compact, we have also fac-

tored the chiral projectors outside of Σ̃, but their existence should be kept in mind in the

following. With the conventions of eq. (B.7), this leads to the Euclidean propagator

ΠE
αα(Q̃) = aL

1

−i /̃Q + i /̃Σ (−Q̃)
aR = aL

i /̃Q + i /̃Σ (Q̃)

[Q̃ + Σ̃(Q̃)]2
aR , (3.10)

where we have made use of the property /̃Σ (−Q̃) = − /̃Σ (Q̃), following from hermiticity (or,

to be more precise, the so-called γ5-hermiticity that replaces hermiticity in the Euclidean

theory: the Dirac operator D satisfies γ5D
†γ5 = D) and CP-invariance. We have also left

out the flavour indices from Σ̃ to compactify the notation somewhat.

Defining now, in analogy with the Wick-rotation of Q̃, a four-vector Σµ ≡ (iΣ̃0, Σ̃i);

recalling that Q̃2 = q̃µq̃µ = −Q2; and making use of eq. (3.8), we can write a general

analytic continuation of ΠE
αα(Q̃) as

ΠR
αα(q0,q) = ΠE

αα(−iq0,q) = aL
− /Q − /Σ (Q)

Q2 + 2Q · Σ(Q) + Σ2(Q)
aR . (3.11)

Writing finally Σ(q0 ± i0+,q) ≡ Re Σ(q0,q)± i Im Σ(q0,q) in analogy with eq. (3.1), mak-

ing use of eq. (3.4), and employing the symmetry properties Re Σ(−Q) = −Re Σ(Q),

Im Σ(−Q) = Im Σ(Q), the master relation of eq. (2.21) becomes

dNI(x,q)

d4xd3q
=

4nF(q0)

(2π)32q0

3
∑

α=1

|MD|2αI

{[Q + ReΣ]2 − [Im Σ]2}2 + 4{[Q + Re Σ] · Im Σ}2
× (3.12)

×Tr
{

/QaL

(

2[Q + ReΣ] · Im Σ[ /Q + Re /Σ ] − {[Q + Re Σ]2 − [Im Σ]2} Im /Σ
)

aR

}

,

where Σ ≡ Σαα(Q), and Q2 = M2
I .

We remark that the trace over Dirac matrices on the latter row of eq. (3.12) could

trivially be carried out. Given that this does not simplify the structure in an essential way,

however, we do not write down the corresponding formula explicitly. We also note that /Σ

can contain two types of Lorentz structures, /Σ (Q) = /Qf1(Q
2, Q ·u)+ /u f2(Q

2, Q ·u), where

u = (1,0) is the plasma four-velocity [27]. However, we do not need to make a distinction

between these two structures here.

– 10 –



J
H
E
P
0
6
(
2
0
0
6
)
0
5
3

Now, in the absence of (leptonic) chemical potentials [15], it is easy to see that ReΣ

gets no contributions at O(g2
w/m2

W ), corresponding to 1-loop level within the Fermi model.

The dominant contributions are O(g2
w/m4

W ), and originate from 1-loop graphs within the

electroweak theory [28, 29]. The dominant contributions within the Fermi-model are of

2-loop order, O(g4
w/m4

W ), and thus suppressed with respect to the 1-loop effects from

the electroweak theory. In contrast, Im Σ requires on-shell particles on the inner lines, and

cannot at low energies E ¿ mW get generated within 1-loop level in the electroweak theory

(more precisely, ImΣ is exponentially suppressed by ∼ exp(−mW /T )). The dominant

contributions are O(g4
w/m4

W ) and can be computed within the Fermi-model. It is these

contributions that we concentrate on in the following.

For general orientation, it is useful to note that if we assume Re Σ, ImΣ ¿ Q, as is

parametrically the case at low energies, then eq. (3.12) can be simplified to

dNI(x,q)

d4xd3q
≈ 4nF(q0)

(2π)32q0

3
∑

α=1

|MD|2αI

Q2
Tr

[

/QaL Im /Σ aR

]

. (3.13)

Given that the large-time decay of the retarded propagator ΠR is determined by the struc-

ture q0 + i Im Σ0 (cf. eq. (3.11)), and given our conventions in eq. (B.4), we expect the

behaviour ΠR(x0) ∼
∫

q0 exp(−iq0x0)/(q0 + i Im Σ0) ∼ exp(−x0 Im Σ0). Therefore Im Σ0

has to be positive; in fact, we can define ImΣ0 = Γν/2, where Γν is called the active neu-

trino damping rate. As eq. (3.13) shows, Im Σ0 > 0 also leads to a positive sterile neutrino

production rate.

3.3 Relation of active neutrino and mesonic spectral functions

With the conventions set, we need to determine i /̃Σ αα(Q̃). A simple computation to second

order in the Fermi interaction (as already mentioned, the first-order contribution vanishes

in the absence of chemical potentials) yields

i /̃Σ αα(Q̃) = 4G2
F

∑

H=W,Z

∑

∫

R̃b

pH γ̃µ
i /̃Q + i /̃R

(Q̃ + R̃)2 + m2
lH

γ̃ν C̃H
µν(R̃) , (3.14)

where pW ≡ 2, pZ ≡ 1/2 are the “weights” of the charged and neutral current channels;

mlW ≡ mlα is the mass of the charged lepton of generation α; mlZ ≡ mνα = 0 is the mass

of the MSM active neutrino; R̃b ≡ (r̃0, r) denotes bosonic Matsubara four-momenta; and

we have defined the Euclidean charged and neutral current correlators in accordance with

eq. (A.8), viz.

C̃W
µν(R̃) ≡

∫

x̃
eiR̃·(x̃−ỹ)

〈

H̃W
µ (x̃)H̃W †

ν (ỹ)
〉

, C̃Z
µν(R̃) ≡

∫

x̃
eiR̃·(x̃−ỹ)

〈

H̃Z
µ (x̃)H̃Z

ν (ỹ)
〉

,

(3.15)

where x̃µ ≡ (x̃0, xi), r̃µ ≡ (r̃0, r̃i) ≡ (r̃0,−ri), x̃ · R̃ ≡ x̃µr̃µ = x̃0r̃0 − xiri, and
∫

x̃ ≡
∫ β
0 dx̃0

∫

d3x. The tildes in C̃’s and H̃’s remind us of the fact that we are for the mo-

ment using Euclidean Dirac-matrices in the hadronic currents. We also point out that

the Dirac algebra remaining in eq. (3.14) cannot in general be greatly simplified, since the
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functions C̃H
µν(R̃) can in principle contain both symmetric (e.g. R̃µR̃ν) and antisymmetric

(εαβµν ũαR̃β) structures in µ ↔ ν.

It is important to stress now that in eq. (3.14) we have assumed a free form for the

lepton/neutrino propagators inside the loop. Naturally, one could also allow for a general

structure, such as the one in eq. (3.10), to appear here. To keep the discussion as simple

as possible, however, we treat the inner lines to zeroth order in GF in this paper.

To see how eq. (3.14) can be analysed, let us simplify the notation somewhat. The

essential issue is what happens with the Matsubara frequencies, and we hence rewrite the

structure as

i /̃Σ (q̃0,q) ≡ ∑

∫

R̃b

f̃µν(i[q̃0 + r̃0])

(q̃0 + r̃0)2 + E2
1

C̃H
µν(r̃0, r)

R̃

Q̃+R̃

Q̃
, (3.16)

where

E1 ≡
√

(q + r)2 + m2
lH

. (3.17)

The drawing in eq. (3.16) illustrates the momentum flow, with the thick line indicating

the composite mesonic propagator. The challenge is simply to rewrite eq. (3.16) in a form

where the analytic continuation needed for Re Σ and Im Σ can be carried out in a controlled

way, without generating any non-converging sums or integrals.

In order to proceed, we first rewrite eq. (3.16) as

i /̃Σ (q̃0,q) =

∫

r

T
∑

r̃
0b

∑

s̃
0f

δs̃0−q̃0−r̃0

f̃µν(is̃0)

s̃2
0 + E2

1

C̃H
µν(r̃0, r) , (3.18)

where
∫

r
≡

∫

d3r/(2π)3, and r̃0b, s̃0f denote bosonic and fermionic Matsubara frequencies,

respectively. Furthermore, we note that the Kronecker δ-function can be expressed as

δs̃0−q̃0−r̃0
= T

∫ β

0
dτ eiτ(s̃0−q̃0−r̃0) . (3.19)

Thereby the correlation function becomes

i /̃Σ (q̃0,q) =

∫

r

∫ β

0
dτ e−iτ q̃0

[

T
∑

s̃
0f

f̃µν(is̃0)

s̃2
0 + E2

1

eiτ s̃0

][

T
∑

r̃
0b

e−iτ r̃0C̃H
µν(r̃0, r)

]

. (3.20)

The sum inside the first square brackets can be performed according to eq. (B.14). In order

to handle the second square brackets, we express C̃H
µν(r̃0, r) through the spectral represen-

tation in eq. (A.14). Inserting this into eq. (3.20) and changing orders of integration, we

obtain

i /̃Σ (q̃0,q) =

∫

r

nF(E1)

2E1

∫ ∞

−∞

dω

π
ρ̃H

µν(ω, r) ×

×
∫ β

0
dτ e−iτ q̃0

[

f̃µν(−E1)e
(β−τ)E1 − f̃µν(E1)e

τE1

]

T
∑

r̃
0b

e−iτ r̃0

ω − ir̃0
. (3.21)
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As the next step, the sum in eq. (3.21) can be performed. In fact, the result can immediately

be obtained by choosing suitable constants c, d in eq. (A.17): for 0 < τ < β,

T
∑

r̃
0b

e−iτ r̃0

ω − ir̃0
= nB(ω)e(β−τ)ω , (3.22)

where nB(x) ≡ 1/[exp(βx) − 1]. The integral over τ can then be carried out according to

eq. (B.15), leading finally to

i /̃Σ (q̃0,q) =

∫

r

nF(E1)

2E1

∫ ∞

−∞

dω

π
ρ̃H

µν(ω, r)nB(ω) ×

×
[

f̃µν(−E1)
eβ(ω+E1) + 1

iq̃0 + ω + E1
− f̃µν(E1)

eβω + eβE1

iq̃0 + ω − E1

]

. (3.23)

It remains to carry out the analytic continuation q̃0 → −i[q0 ± i0+] and to take the

real and imaginary parts. In particular, taking the imaginary part as defined by eq. (3.3)

goes with eq. (A.12), given that q̃0 only appears in a simple way in eq. (3.23). Carrying

then out the integration over ω to remove the δ-functions, and returning simultaneously to

Minkowskian Dirac-matrices (γ̃µγ̃µ = γµγµ), whereby the tildes can be removed, we arrive

at

Im /Σ (q0,q) =

∫

r

cosh(βq0/2)

4E1 cosh(βE1/2)
×

×
{

fµν(−E1)ρ
H
µν(−q0 − E1, r)

sinh[β(q0 + E1)/2]
−

fµν(E1)ρ
H
µν(−q0 + E1, r)

sinh[β(q0 − E1)/2]

}

. (3.24)

Defining

∆(p0,p,m) ≡ /P + m , (3.25)

and reintroducing masses in the numerators to remind us of the fact that the ∆-functions

are to be evaluated at the on-shell points (the masses are in any case deleted by the chiral

projectors), we can return to the complete notation:

Im /Σαα(q0,q) = 4G2
F

∑

H=W,Z

pH

∫

d3r

(2π)3
cosh(βq0/2)

4E1 cosh(βE1/2)
×

×
[

γµ∆(−E1,q + r,−mlH )γν

sinh[β(q0 + E1)/2]
ρH

µν(−q0 − E1, r) − (E1 → −E1)

]

. (3.26)

Here E1 is from eq. (3.17). Let us note that ρH
µν vanishes at zero frequency, so that the

poles originating from the sinh-functions in eq. (3.26) are harmless.

To conclude, Im Σ can be expressed as a three-dimensional spatial integral, with certain

hyperbolic weights, over the mesonic spectral functions ρH
µν related to the charged and

neutral currents. On the other hand, ReΣ requires a four-dimensional principal value

integration over the same spectral functions, as dictated by eqs. (3.23), (A.12).

– 13 –



J
H
E
P
0
6
(
2
0
0
6
)
0
5
3

3.4 Reduction of mesonic spectral functions

If we make certain assumptions about the quark mass matrix, the mesonic correlators in

eq. (3.15), as well as the corresponding spectral functions ρH
µν that appear in eq. (3.26), can

be reduced to a small set of quantities that have been widely addressed in the literature.

To start with, it is probably a good approximation at temperatures 100 MeV . T .

400 MeV to treat the three lightest quarks as degenerate, with a certain mass mq, while the

three heaviest quarks can be assumed infinitely heavy, and ignored. In this limit the theory

has an exact SUV (3) flavour symmetry, which guarantees that we can split the correlators

into flavour singlets and non-singlets. Defining T a to be traceless and Hermitean, and T 0

to be the 3×3 unit matrix, we can then construct the flavour non-singlet and singlet vector

and axial currents,

Ṽ a
µ ≡ ψ̄γ̃µT aψ , Ṽ 0

µ ≡ ψ̄γ̃µT 0ψ , Ãa
µ ≡ ψ̄γ̃µγ5T

aψ , Ã0
µ ≡ ψ̄γ̃µγ5T

0ψ . (3.27)

In general, the flavour symmetry allows for six correlation functions:

Tr[T aT b]C̃V
µν(R̃) ≡

∫

x̃
eiR̃·x̃

〈

Ṽ a
µ (x̃)Ṽ b

ν (0)
〉

, (3.28)

Tr[T aT b]C̃A
µν(R̃) ≡

∫

x̃
eiR̃·x̃

〈

Ãa
µ(x̃)Ãb

ν(0)
〉

, (3.29)

Tr[T aT b]C̃VA
µν (R̃) ≡

∫

x̃
eiR̃·x̃

〈

Ṽ a
µ (x̃)Ãb

ν(0) + Ãa
µ(x̃)Ṽ b

ν (0)
〉

, (3.30)

C̃V 0
µν (R̃) ≡

∫

x̃
eiR̃·x̃

〈

Ṽ 0
µ (x̃)Ṽ 0

ν (0)
〉

, (3.31)

C̃A0
µν (R̃) ≡

∫

x̃
eiR̃·x̃

〈

Ã0
µ(x̃)Ã0

ν(0)
〉

, (3.32)

C̃VA0
µν (R̃) ≡

∫

x̃
eiR̃·x̃

〈

Ṽ 0
µ (x̃)Ã0

ν(0) + Ã0
µ(x̃)Ṽ 0

ν (0)
〉

. (3.33)

However, only four among these are non-trivial in the mass-degenerate limit that we are

considering: the vector and axial currents have opposite transformation properties in charge

conjugation C, which implies that C̃VA
µν (R̃), C̃VA0

µν (R̃) vanish in this case.

Now, the correlators that appear in eq. (3.15) can be expressed in terms of the ones

just defined. We obtain

C̃W
µν(R̃) =

|Vud|2 + |Vus|2
4

[

C̃V
µν(R̃) + C̃A

µν(R̃)
]

, (3.34)

C̃Z
µν(R̃) =

2

3

[

(1 − 2xW)2C̃V
µν(R̃) + C̃A

µν(R̃)
]

+
1

36

[

C̃V 0
µν (R̃) + C̃A0

µν (R̃)
]

, (3.35)

where Vij are elements of the CKM matrix. Identical relations hold for the spectral func-

tions.

Under further assumptions, the set of independent correlators can still be reduced. In

particular, taking the chiral limit mq → 0, the Ward identity following from applying an

infinitesimal non-singlet axial transformation on the correlator 〈Ṽ a
µ (x̃)Ãb

ν(0)〉 states that

C̃V
µν(R̃) = C̃A

µν(R̃). For the singlets this is not true in general, in spite of the fact that
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anomalous processes are in some sense suppressed at high temperatures (see, e.g., ref. [30]).

So in principle there remain three independent functions to determine, C̃V
µν , C̃V 0

µν , C̃A0
µν .

Now, in the three-flavour theory, the non-singlet vector correlator C̃V
µν determines

directly the photon spectral function [22], and is thus relevant for computing the pho-

ton and dilepton production rates, which are among the prime observables for heavy

ion collision experiments. Therefore it has been addressed with a variety of methods

in the literature, starting with various perturbative treatments [22] as well as with so-

called thermal sum rules [31]. The (resummed [32]) perturbative treatments have reached

a great degree of sophistication by now [33], with different strategies applicable in dif-

ferent parts of the phase space. On the other hand, it has also been realised that an

analytic continuation of imaginary time correlators defined on the finite τ -interval can be

carried out in principle [34], which opens up the possibility of lattice QCD determina-

tions. There have indeed been attempts at practical implementations of a certain analytic

continuation from numerical data [35], though they are not without problems for the mo-

ment [36]. Finally, for T ¿ 150 MeV, chiral perturbation theory can be systematically

applied [37] or at least used as a solid baseline for the computation of C̃V
µν (and thus of

ρV
µν) [38].

The vector singlet C̃V 0
µν , on the other hand, can be associated with the baryon num-

ber current, whose susceptibility χ (which is an integral over the spectral function, χ =
∫ ∞

−∞
dω ρV 0

00 (ω,0)/πω) is argued to be relevant for so-called event-to-event fluctutations in

heavy ion collision experiments [39]. In resummed perturbative treatments [40] the differ-

ence between the vector singlet and non-singlet susceptibilites (this difference is often called

the “off-diagonal quark number susceptibility”) is however very small, being suppressed by

α3
s ln(1/αs) [41], so that at high enough temperatures C̃V 0

µν can well be approximated (up

to an overall factor) by C̃V
µν . At lower temperatures close to T ' 150 MeV, on the other

hand, a lattice determination would again be needed; unfortunately, the difference between

C̃V 0
µν and C̃V

µν is given by a disconnected quark-line contraction which is technically rather

difficult to measure accurately [42]. We should of course stress that the susceptibility alone

contains much less information than the complete function C̃V 0
µν , or its analytic continuation

ρV 0
µν . The general high-temperature structure of the latter has been analysed in ref. [43].

Finally, at very low temperatures, chiral perturbation theory predicts that C̃V 0
µν is strongly

suppressed with respect to C̃V
µν .

Much the same comments can be made for the axial singlet current, C̃A0
µν . At high

enough temperatures, where resummed QCD perturbation theory is applicable, it agrees

up to a certain order in the resummed perturbative expansion with C̃V 0
µν . At lower tempera-

tures, the difference between C̃A0
µν and C̃V 0

µν becomes significant. This difference is of course

quite interesting in its own right, being related to the η′-meson and the chiral anomaly.

However, analytic and numerical treatments are demanding in this range. At very low

temperatures, chiral perturbation theory indicates that C̃A0
µν remains more significant than

C̃V 0
µν .

3.5 Perturbative limit

Returning finally to the simplest possible logic, we wish to inspect the mesonic spectral
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function ρH
µν in naive perturbation theory. The purpose is to show that in this case,

eq. (3.26) leads to the familiar structure of Boltzmann equations. (The procedure we

follow is analogous to the one first worked out for simpler cases in ref. [44], and also used

in previous active neutrino damping rate computations [45].)

In order to reach this goal, we write generic hadronic currents (eqs. (3.6), (3.7)) in the

form H̃µ(x̃) = q̄2(x̃)γ̃µΓq3(x̃), where q2, q3 denote quark fields and Γ is some Dirac matrix

structure. Carrying then out the contractions in the correlators of eq. (3.15), we obtain

C̃H
µν(R̃) = −Nc

∑

∫

T̃f

Tr

{−i( /̃T + /̃R ) + m2

(t̃0 + r̃0)2 + E2
2

γ̃µΓ
−i /̃T + m3

t̃20 + E2
3

γ̃νΓ

}

, (3.36)

where Nc = 3 is the number of colours, and

E2 ≡
√

(t + r)2 + m2
2 , E3 ≡

√

t2 + m2
3 . (3.37)

The important issue is again what happens with the Matsubara frequencies. Following the

steps in section 3.3, and denoting the complete numerator of eq. (3.36) by a function g̃µν ,

we obtain

T
∑

t̃
0f

g̃µν(it̃0 + ir̃0, it̃0)

[(t̃0 + r̃0)2 + E2
2 ][t̃20 + E2

3 ]

= T
∑

t̃
0f,ũ0f

δũ0−t̃0−r̃0

g̃µν(iũ0, it̃0)

[ũ2
0 + E2

2 ][t̃20 + E2
3 ]

=

∫ β

0
dτ e−iτ r̃0 T

∑

ũ
0f

eiũ0τ T
∑

t̃
0f

e−it̃0τ g̃µν(iũ0, it̃0)

[ũ2
0 + E2

2 ][t̃20 + E2
3 ]

=
nF(E2)nF(E3)

4E2E3

∫ β

0
dτ e−iτ r̃0

[

+g̃µν(−E2,+E3)e
(β−τ)(E2+E3) −

− g̃µν(−E2,−E3)e
(β−τ)E2+τE3 −

− g̃µν(+E2,+E3)e
(β−τ)E3+τE2 +

+ g̃µν(+E2,−E3)e
τ(E2+E3)

]

, (3.38)

where we made use of eq. (B.14). The integral remaining can be carried out by using

eq. (A.18) (recalling that r̃0 is bosonic), and the spectral function follows then by picking

up the discontinuity across the real axis, according to eq. (A.12):

ρ̃H
µν(R) =

∫

t

−π

4E2E3

[

+δ(r0 + E2 + E3)g̃µν(−E2,+E3)(1 − nF2 − nF3) +

+ δ(r0 + E2 − E3)g̃µν(−E2,−E3)(nF2 − nF3) +

+ δ(r0 − E2 + E3)g̃µν(+E2,+E3)(nF3 − nF2) +

+ δ(r0 − E2 − E3)g̃µν(+E2,−E3)(nF2 + nF3 − 1)

]

, (3.39)

where we have denoted nFi ≡ nF(Ei).
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The expression in eq. (3.39) can now be inserted into eq. (3.26). There are eight

different terms in total. The hyberbolic functions in eq. (3.26) can be rewritten in terms

of nF’s and nB’s, and making use of relations such as

δ(−q0 +E1 +E2 +E3)nB(q0−E1)(1−nF2−nF3) = δ(−q0 +E1 +E2 +E3)nF2nF3 , (3.40)

they can be reorganised in a simpler form. In view of eq. (2.21), we also choose to factor

out n−1
F (q0) from all the terms. After a number of trivial if tedious manipulations, we

finally arrive at

Im /Σ (Q) = 2NcG
2
F n−1

F (q0)
∑

H=W,Z

pH

∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2

∫

d3p3

(2π)32E3
×

×
{

(2π)4δ(4)(P1 + P2 + P3 − Q)nF1nF2nF3 A(−mlH ,m2,−m3) +
1

2

3

Q

+ (2π)4δ(4)(P2 + P3 − P1 − Q)nF2nF3(1 − nF1)A(mlH ,m2,−m3) +
2 1

3 Q

+ (2π)4δ(4)(P1 + P3 − P2 − Q)nF1nF3(1 − nF2)A(−mlH ,−m2,−m3) +
1 2

3 Q

+ (2π)4δ(4)(P1 + P2 − P3 − Q)nF1nF2(1 − nF3)A(−mlH ,m2,m3) +
1 3

2 Q

+ (2π)4δ(4)(P1 − P2 − P3 − Q)nF1(1 − nF2)(1 − nF3)A(−mlH ,−m2,m3) + 1

2

Q

3

+ (2π)4δ(4)(P2 − P1 − P3 − Q)nF2(1 − nF1)(1 − nF3)A(mlH ,m2,m3) + 2

1

Q

3

+ (2π)4δ(4)(P3 − P1 − P2 − Q)nF3(1 − nF1)(1 − nF2)A(mlH ,−m2,−m3) + 3

1

Q

2

+ (2π)4δ(4)(−P1 − P2 − P3 − Q) (1 − nF1)(1 − nF2)(1 − nF3)A(mlH ,−m2,m3)

}

,
1

2

Q

3

(3.41)

where

A(mlH ,m2,m3) ≡ γµ( /P 1 + mlH )γν Tr
[

( /P 2 + m2)γµΓ( /P 3 + m3)γνΓ
]

. (3.42)

Here Pi ≡ (Ei,pi) are on-shell four-momenta, and the energies have been transformed from

eqs. (3.17), (3.37) into

E1 ≡
√

p2
1 + m2

lH
, E2 ≡

√

p2
2 + m2

2 , E3 ≡
√

p2
3 + m2

3 . (3.43)

The graphs in eq. (3.41) illustrate the various processes, with time and momenta assumed to

run from left to right, and arrows indicating particles / antiparticles in the usual way. The

general structure is clearly what we expect from Boltzmann equations, however we have

arrived at it without any model assumptions, evaluations of scattering matrix elements, or

spin averages. It is easy to check (by making use of the properties of the nF’s as well as

the fact that the first argument of A(m1,m2,m3) can be dropped as it will in any case be
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projected out by aL, aR, and that A(0,−m2,−m3) = A(0,m2,m3) for Γ = a + bγ5) that

the expression in eq. (3.41) is symmetric in Q → −Q, as it should be.

For illustration it is useful to take one more step, and insert this result into the simpli-

fied form in eq. (3.13). Let us consider the contribution from the third term in eq. (3.41),

for instance, and choose the charged current, i.e. H ≡ W . Then Γ = aL, and we obtain

dNI(x,q)

d4xd3q
=

16NcG
2
F

(2π)32q0

3
∑

α=1

|MD|2αI

M2
I

∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2

∫

d3p3

(2π)32E3
×

×(2π)4δ(4)(P1 + P3 − P2 − Q)nF(u · P1)nF(u · P3)[1 − nF(u · P2)] ×
×Tr

[

/QaLγµ( /P 1 − mνα)γνaR

]

Tr
[

( /P 2 − m2)γµaL( /P 3 − m3)γνaL

]

,
1 2

3 Q

(3.44)

where mνα = 0 has only been kept to formally indicate the anti-particle direction of the

line, and we have written everything in a Lorentz-covariant form. All explicit masses drop

out because of the chiral projectors. The Dirac algebra is elementary,

Tr
[

/Qγµ /P 1γ
νaR

]

Tr
[

/P 2γµ /P 3γνaL

]

= 16Q · P3 P1 · P2 . (3.45)

This expression is positive, and carrying out the phase-space integral in eq. (3.44), one

obtains a finite function of |q|. Let us remark, though, that while the integration over

the energy-conservation constraint is simple in the center-of-mass frame, the plasma four-

velocity u becomes non-trivial if this frame is chosen; in general, therefore, the phase-space

integrals that appear in eq. (3.44) are technically non-trivial.

It is appropriate to end now by pointing out that eqs. (3.44), (3.45) contain significant

differences with respect to the spin-averaged matrix elements squared that appear in active

neutrino scattering cross-sections [45], and have sometimes also been inserted into the

Boltzmann equations for sterile neutrino production. In particular, the left-most trace in

eq. (3.45) contains the projector aR, rather than aL; this is because eq. (2.21) contains

the active neutrino propagator, rather than the self-energy. As a consequence, eq. (3.45)

does not lead to a purely s-channel momentum structure (16Q · P2 P1 · P3) like the active

neutrino scattering cross sections [45]. Whether this special example has any practical

significance is not clear at this stage, but it illustrates the advantages of our framework

where the correct structures are produced automatically from thermal field theory, rather

than having to be inserted by hand.

4. Conclusions and outlook

While the sterile neutrino production rate has previously been investigated in the literature

in some detail, the hadronic contributions to it have never been analysed properly. These

contributions involve strongly interacting dynamics at temperatures of the order of the

QCD scale, where neither perturbation theory nor the dilute hadronic gas approximation

are valid.

To confront this situation, we have derived a general relation that expresses the sterile

neutrino production rate in terms of the active neutrino spectral function, computable by
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using equilibrium thermal field theory within the Minimal Standard Model (eq. (2.21)).

The active neutrino spectral function can in turn be expressed in terms of the real and

imaginary parts of the active neutrino self-energy (eq. (3.12)). These equations show that

hadronic contributions may play a role in three different ways:

(1) Most importantly, the hadronic degrees of freedom contribute at leading order to

the imaginary part of the active neutrino self-energy, Im Σ. Therefore, we have ex-

pressed the hadronic contribution to Im Σ as a certain convolution of the spectral

functions related to hadronic current-current correlation functions (eq. (3.26)). The

latter can in turn be expressed in terms of standard vector and axial-vector correla-

tors (eqs. (3.34), (3.35)) that can be studied with a number of different theoretical

methods, and are also partly related to experimental observables addressed in the

heavy ion program.

(2) The parametrically dominant contribution to the real part of the active neutrino

self-energy, ReΣ, arises from 1-loop graphs within the electroweak theory, and does

not contain hadronic effects. On the other hand, subdominant contributions, for-

mally suppressed by αw, do contain hadronic effects. As shown by eq. (3.23), these

contributions can be expressed in terms of a certain weighted integral over the same

hadronic spectral functions that appear in the imaginary part.

(3) Finally, the sterile neutrino production rate equation contains a time derivative d/dt,

the Hubble rate H, and the temperature T (cf. eq. (2.22)). In cosmology, all of these

are related via the Einstein equations. The relation is again sensitive to hadronic

effects, via the equation-of-state of the primordial plasma. The current status and

phenomenological fits for all the thermodynamic functions that appear in the time-

temperature relation can be found in ref. [21, section IV].

To summarise, our formulae should allow to estimate for the first time the systematic

hadronic uncertainties that exist in computations of sterile neutrino production through

active-sterile transitions. A numerical evaluation of these effects is in progress.

Apart from these non-perturbative aspects, we have also demonstrated that our gen-

eral formulae allow to derive, without further assumptions, the appropriate Boltzmann

equations that apply in the naive weak-coupling limit (eq. (3.41)). It may in fact be useful

to repeat our computations for the leptonic contributions as well, since a first-principles

derivation frees us from the need to argue about spin averages or symmetry factors, and

produces automatically the correct Dirac and chiral structures for the Boltzmann equa-

tions.
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A. Basic relations for bosons

We list in this Appendix some common definitions and relations that apply to two-point

correlation functions built out of bosonic operators; for more details see, e.g., refs. [24,

25].

We denote Minkowskian space-time coordinates by x = (t, xi) and momenta by Q =

(q0, qi), while their Euclidean counterparts are denoted by x̃ = (τ, xi), Q̃ = (q̃0, qi).

Wick rotation is carried out by τ ↔ it, q̃0 ↔ −iq0. Arguments of operators denote im-

plicitely whether we are in Minkowskian or Euclidean space-time. In particular, Heisenberg-

operators are defined as

Ô(t,x) ≡ eiĤtÔ(0,x)e−iĤt , Ô(τ,x) ≡ eĤτ Ô(0,x)e−Ĥτ . (A.1)

The thermal ensemble is defined by the density matrix ρ̂ = Z−1 exp(−βĤ).

We denote the operators which appear in the two-point functions by φ̂α(x), φ̂†
β(x).

They could be elementary field operators, but they could also be composite operators

consisting of a product of elementary field operators.

We can now define various classes of correlation functions. The “physical” correlators

are defined as

Π>
αβ(Q) ≡

∫

dt d3x eiQ·x
〈

φ̂α(x)φ̂†
β(0)

〉

, (A.2)

Π<
αβ(Q) ≡

∫

dt d3x eiQ·x
〈

φ̂†
β(0)φ̂α(x)

〉

, (A.3)

ραβ(Q) ≡
∫

dt d3x eiQ·x
〈1

2

[

φ̂α(x), φ̂†
β(0)

]〉

, (A.4)

where ραβ is called the spectral function, while the “retarded”/“advanced” correlators can

be defined as

ΠR
αβ(Q) ≡ i

∫

dt d3x eiQ·x
〈[

φ̂α(x), φ̂†
β(0)

]

θ(t)
〉

, (A.5)

ΠA
αβ(Q) ≡ i

∫

dt d3x eiQ·x
〈

−
[

φ̂α(x), φ̂†
β(0)

]

θ(−t)
〉

. (A.6)

On the other hand, from the computational point of view one is often faced with “time-

ordered” correlation functions,

ΠT
αβ(Q) ≡

∫

dt d3x eiQ·x
〈

φ̂α(x)φ̂†
β(0)θ(t) + φ̂†

β(0)φ̂α(x)θ(−t)
〉

, (A.7)

which appear in time-dependent perturbation theory, or with the “Euclidean” correlator

ΠE
αβ(Q̃) ≡

∫ β

0
dτ

∫

d3x eiQ̃·x̃
〈

φ̂α(x̃)φ̂†
β(0)

〉

, (A.8)

which appears in non-perturbative formulations. Note that the Euclidean correlator is also

time-ordered by definition, and can be computed with standard imaginary-time functional

integrals in the Matsubara formalism.
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Now, all of the correlation functions defined can be related to each other. In particular,

all correlators can be expressed in terms of the spectral function, which in turn can be

determined as a certain analytic continuation of the Euclidean correlator. In order to do

this, we may first insert sets of energy eigenstates, to obtain the Fourier-space version

of the so-called Kubo-Martin-Schwinger (KMS) relation: Π<
αβ(Q) = e−βq0

Π>
αβ(Q). Then

ραβ(Q) = [Π>
αβ(Q) − Π<

αβ(Q)]/2 and, conversely,

Π>
αβ(Q) = 2[1 + nB(q0)]ραβ(Q) , Π<

αβ(Q) = 2nB(q0)ραβ(Q) , (A.9)

where nB(x) ≡ 1/[exp(βx) − 1]. Inserting the representation

θ(t) = i

∫ ∞

−∞

dω

2π

e−iωt

ω + i0+
(A.10)

into the definitions of ΠR, ΠA, we obtain

ΠR
αβ(Q) =

∫ ∞

−∞

dω

π

ραβ(ω,q)

ω − q0 − i0+
, ΠA

αβ(Q) =

∫ ∞

−∞

dω

π

ραβ(ω,q)

ω − q0 + i0+
. (A.11)

Doing the same with ΠT and making use of

1

∆ ± i0+
= P

( 1

∆

)

∓ iπδ(∆) , (A.12)

produces

ΠT
αβ(Q) =

∫ ∞

−∞

dω

π

iραβ(ω,q)

q0 − ω + i0+
+ 2ραβ(q0,q)nB(q0) . (A.13)

Finally, writing the argument inside the τ -integration in eq. (A.8) as a Wick rotation of

the integrand in eq. (A.2), which in turn is expressed as an inverse Fourier transform of

Π>(Q), for which eq. (A.9) is inserted, and changing orders of integration, we get

ΠE
αβ(Q̃) =

∫ β

0
dτ eiq̃0τ

∫ ∞

−∞

dω

2π
e−ωτΠ>

αβ(ω,q) =

∫ ∞

−∞

dω

π

ραβ(ω,q)

ω − iq̃0
. (A.14)

This relation can formally be inverted by making use of eq. (A.12),

ραβ(q0,q) =
1

2i
Disc ΠE

αβ(q̃0 → −iq0,q) , (A.15)

where the operation Disc is defined in eq. (3.3).

We also recall that bosonic Matsubara sums can be carried out through

T
∑

ωb

iωbc + d

ω2
b + E2

eiωbτ ≡ (c∂τ + d)T
∑

ωb

eiωbτ

ω2
b + E2

(A.16)

=
nB(E)

2E

[

(−cE + d)e(β−τ)E + (cE + d)eτE
]

, (A.17)

where ωb = 2πTn, with n an integer, and we assumed 0 < τ < β; and that a typical

integration yields
∫ β

0
dτ e−τ(iωb+∆) =

1 − e−β∆

iωb + ∆
. (A.18)
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B. Basic relations for fermions

We list in this Appendix some common definitions and relations that apply to two-point

correlation functions built out of fermionic operators; for more details see, e.g., Refs. [24,

25].

We denote the operators which appear in the two-point functions by ν̂α(x), ˆ̄νβ(x).

They could be elementary field operators, in which case the indices α, β label Dirac and/or

flavour components, but they could also be composite operators consisting of a product of

elementary field operators.

Like in the bosonic case, we can define various classes of correlation functions. The

“physical” correlators are now set up as

Π>
αβ(Q) ≡

∫

dt d3x eiQ·x
〈

ν̂α(x) ˆ̄νβ(0)
〉

, (B.1)

Π<
αβ(Q) ≡

∫

dt d3x eiQ·x
〈

− ˆ̄νβ(0)ν̂α(x)
〉

, (B.2)

ραβ(Q) ≡
∫

dt d3x eiQ·x
〈1

2

{

ν̂α(x), ˆ̄νβ(0)
}〉

, (B.3)

where ραβ is the spectral function, while retarded and advanced correlators can be defined

as

ΠR
αβ(Q) ≡ i

∫

dt d3x eiQ·x
〈{

ν̂α(x), ˆ̄νβ(0)
}

θ(t)
〉

, (B.4)

ΠA
αβ(Q) ≡ i

∫

dt d3x eiQ·x
〈

−
{

ν̂α(x), ˆ̄νβ(0)
}

θ(−t)
〉

. (B.5)

On the other hand, the time-ordered correlation function reads

ΠT
αβ(Q) ≡

∫

dt d3x eiQ·x
〈

ν̂α(x) ˆ̄νβ(0)θ(t) − ˆ̄νβ(0)ν̂α(x)θ(−t)
〉

, (B.6)

while the Euclidean correlator is

ΠE
αβ(Q̃) ≡

∫ β

0
dτ

∫

d3x eiQ̃·x̃
〈

ν̂α(x̃) ˆ̄νβ(0)
〉

. (B.7)

Note again that the Euclidean correlator is time-ordered by definition, and can be computed

with standard imaginary-time functional integrals in the Matsubara formalism.

Like in the bosonic case, all of the correlation functions defined can be expressed in

terms of the spectral function, which in turn can be determined as a certain analytic

continuation of the Euclidean correlator. First, inserting sets of energy eigenstates, we

obtain the KMS-relation in Fourier-space, Π<
αβ(Q) = −e−βq0

Π>
αβ(Q). Then ραβ(Q) =

[Π>
αβ(Q) − Π<

αβ(Q)]/2 and, conversely,

Π>
αβ(Q) = 2[1 − nF(q0)]ραβ(Q) , Π<

αβ(Q) = −2nF(q0)ραβ(Q) , (B.8)

where nF(x) ≡ 1/[exp(βx) + 1]. Inserting the representation of eq. (A.10) into the defini-

tions of ΠR, ΠA produces

ΠR
αβ(Q) =

∫ ∞

−∞

dω

π

ραβ(ω,q)

ω − q0 − i0+
, ΠA

αβ(Q) =

∫ ∞

−∞

dω

π

ραβ(ω,q)

ω − q0 + i0+
. (B.9)
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Proceeding similarly with ΠT and making use of eq. (A.12), we obtain

ΠT
αβ(Q) =

∫ ∞

−∞

dω

π

iραβ(ω,q)

q0 − ω + i0+
− 2ραβ(q0,q)nF(q0) . (B.10)

Finally, writing the argument inside the τ -integration in eq. (B.7) as a Wick rotation of

the inverse Fourier transform of the left-hand side of eq. (B.1), inserting eq. (B.8), and

changing orders of integration, we get

ΠE
αβ(Q̃) =

∫ β

0
dτ eiq̃0τ

∫ ∞

−∞

dω

2π
e−ωτΠ>

αβ(ω,q) =

∫ ∞

−∞

dω

π

ραβ(ω,q)

ω − iq̃0
. (B.11)

Like in the bosonic case, this relation can be inverted by making use of eq. (A.12),

ρ(q0,q) =
1

2i
Disc ΠE(q̃0 → −iq0,q) . (B.12)

We also recall that fermionic Matsubara sums can be carried out through

T
∑

ωf

iωfc + d

ω2
f + E2

eiωfτ ≡ (c∂τ + d)T
∑

ωf

eiωfτ

ω2
f + E2

(B.13)

=
nF(E)

2E

[

(−cE + d)e(β−τ)E − (cE + d)eτE
]

, (B.14)

where ωf = 2πT (n + 1
2 ), with n an integer, and we assumed 0 < τ < β; and that a typical

integration yields
∫ β

0
dτ e−τ(iωf+∆) =

1 + e−β∆

iωf + ∆
. (B.15)

C. An alternative derivation of eq. (2.21)

We present in this Appendix an alternative derivation (following ref. [25], for example) of

eq. (2.21), which is technically somewhat simpler than the one in the main text, but with

the price of containing a few heuristic steps. The end result is nevertheless identical.

The starting point is the interaction Hamiltonian in the phase with broken electroweak

symmetry, eq. (2.13). Consider now an initial state |I〉 = |i〉 ⊗ |0〉 and a final state |F〉 =

|f〉 ⊗ |I;q, s〉, where the right subspace contains the sterile neutrinos, and

|I;q, s〉 ≡ â†I;q,s|0〉 , 〈I;q, s| = 〈0|âI;q,s . (C.1)

The transition matrix element can immediately be written down,

TFI = 〈F|
∫

dt ĤI(t)|I〉 =

∫

dt d3x
eiQ·x

√

(2π)32q0
〈f|ĴI;q,s(x)|i〉 , (C.2)

where we inserted eq. (2.16), and ĴI;q,s is from eq. (2.17). The production rate can then

be obtained by summing over all initial states, with their proper Boltzmann weights, and
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over all allowed final states:

dNI(x,q)

d4xd3q
= lim

V,∆t→∞

1

V ∆t

∑

s=±1

∑

f,i

e−βEi

Z
|TFI |2 (C.3)

=
1

(2π)32q0

∫

dt d3x eiQ·x
∑

s=±1

〈

Ĵ†
I;q,s(x)ĴI;q,s(0)

〉

, (C.4)

where V is the volume, ∆t is the time interval, Z the partition function, we defined a

thermal average by 〈. . .〉 ≡ Z−1 Tr[exp(−βĤMSM)(. . .)], and made use of translational

invariance.

It remains to repeat steps (ii), (iii) in the paragraph following eq. (2.17). We thus

arrive directly at eq. (2.20).
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