8 research outputs found

    Techno-economic performance evaluation of solar tower plants with integrated multilayered PCM thermocline thermal energy storage: a comparative study to conventional two-tank storage systems

    Get PDF
    Copyright 2016 AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher investment costs and difficulties during the operation of the variable volume tanks. Instead, another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost up to 30% and maintain high efficiencies. This paper analyses a multi-layered solid PCM storage tank concept for solar tower applications, and describes a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. A detail model of the tank has been developed and introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme.Peer ReviewedPostprint (published version

    A co-simulation based framework for the analysis of integrated urban energy systems : Lessons from a Swedish case study

    No full text
    As major responsible for CO2 emissions, the energy sector is urgently called to take action against climatechange. The integration of renewable energy resources is a solution that, however, comes with a challenge.In fact, renewables are often variable, unpredictable and distributed. These characteristics add an extremecomplexity to the design and control of energy systems. Sector-coupling is nowadays strongly supported asa promising approach to increase the flexibility of these systems. For example, wind power curtailment canbe reduced by using the power surplus to operate heat pumps. When the wind does not blow, the heat storedin the thermal mass of the buildings and waste heat recovery can be used instead. These solutions are largelyavailable at district-to-city level. However, a suitable framework to design these integrated urban energysystems is missing.This thesis work proposes such a framework, as a set of methodological steps and integrated modellingtools. Among them, the modelling and simulation approach is a fundamental aspect. Given theheterogeneity of integrated energy systems, dedicated technology-specific models are developed and usedto achieve the required level of detail. A co-simulation method is implemented when time step coordinationand data exchange are necessary. Scenarios are developed to compare the techno-economic andenvironmental performance of alternative solutions, based on sector-coupling. Levelized cost of energy andCO2 emissions are used as main performance indicators for this purpose. In order to show the applicabilityof this methodology, Hammarby Sjöstad (Stockholm, Sweden) is selected as a case study. This also allowsto tackle a real local open issue, which is the definition of the best solution between district heating anddomestic heat pumps for multi-apartment buildings.The proposed framework was successfully applied to the case study. Case specific results allowed toformulate more general conclusions applicable to similar multi-apartment residential districts, in a Swedishcontext. It could be shown that co-simulation is a useful approach to capture sector-coupling bottlenecksand opportunities. Respective examples are electricity grid overloadings caused by installations of heatpumps and the control of thermal mass in buildings to replace the use of heat peak boilers. However, cosimulationshould be strictly limited to cases where control feedback loops need to be taken into account,such as in the previous examples. This is because it involves a higher implementation complexity and ahigher computational time. Thus, for example, the models of a heat network and of an electricity grid withno coupling technologies, such as heat pumps and electric boilers, should be preferably analyzedsequentially. The levelized cost of heat was found to be a game-changer parameter when comparing energyinfrastructures, beyond the specific business aspects. For example, the replacement of a district heatingtariff with its levelized cost of heat clearly showed the economic advantage of heat networks againstdomestic heat pumps. The CO2 emissions factors of different energy resources (waste, biomass, electricitymix) were shown to be highly critical for two main reasons. Firstly, different assumptions for these factorsled to opposite findings regarding the carbon footprint of specific technologies. For example, heat pumpscould be estimated as both more and less polluting than district heating, depending on the assumedemission factors. Secondly, control strategies based on the CO2 emission factors of the electricity supplymix (power-to-heat) were found to be a promising sector-coupling solution. By analyzing integrated energysystems, it was possible to assess uncovered bottlenecks and suggest new options. In particular, it wasshown that the installation of a large number of distributed heat pumps can overload the electricitydistribution grid in a district. Demand side management, through the thermal mass in buildings andvehicle-to-grid, could help alleviating this problem. On the other hand, district heating was found to be aneven more promising alternative, by integrating demand side management and heat recovery. Heat pumpswere shown to be a suitable partner technology for supporting heat recovery and enabling power-to-heat.DĂ„ energisektorn ansvarar för huvuddelen av vĂ€xthusutslĂ€ppen finns det behov att omgĂ„ende vidtaĂ„tgĂ€rder för att motverka klimatförĂ€ndringar. Integrationen av förnybara energiresurser Ă€r en lösning, dockkommer den med en del utmaningar. Förnybar energi Ă€r ofta variabel, oförutsĂ€gbar och distribuerad. Dessaegenskaper medför en ökad komplexitet nĂ€r det gĂ€ller utformning och styrning av energisystemsystemet.Ökad sektorkoppling mellan olika energislag Ă€r ett lovande tillvĂ€gagĂ„ngssĂ€tt för att öka flexibiliteten i dessasystem. Till exempel kan driftinskrĂ€nkningar för vindkraft minskas genom att anvĂ€nda kraftöverskottet föratt driva vĂ€rmepumpar. NĂ€r vinden inte blĂ„ser kan vĂ€rmen som lagras i byggnaders termiska massa ochĂ„tervinning av spillvĂ€rme anvĂ€ndas istĂ€llet. Dessa lösningar finns mestadels pĂ„ stads- och distriktsnivĂ„. EttlĂ€mpligt modelleringsramverk för att utforma dessa integrerade stadsenergisystem saknas dock.Det föreliggande arbete föreslĂ„r ett sĂ„dant ramverk som en uppsĂ€ttning av metodologiska steg ochintegrerade modelleringsverktyg. Tyngdpunkten ligger pĂ„ modellering och simulering. Med tanke pĂ„ deintegrerade energisystemens heterogenitet utvecklas dedikerade teknologispecifika modeller för att uppnÄönskad detaljnivĂ„. En samsimuleringsmetod implementeras nĂ€r tidsstegskoordinering och datautbyte Ă€rnödvĂ€ndiga mellan olika modeller. Scenarier utvecklas för att jĂ€mföra den tekno-ekonomiska ochmiljömĂ€ssiga prestandan hos alternativa lösningar baserat pĂ„ sektorkoppling. Nivellerade energikostnaderoch koldioxidutslĂ€pp anvĂ€nds som huvudindikatorer för detta Ă€ndamĂ„l. För att visa tillĂ€mpbarheten avdenna metod vĂ€ljs distriktet Hammarby Sjöstad (Stockholm, Sverige) som en fallstudie. Detta gör det ocksĂ„möjligt att ta itu med en real öppen frĂ„ga, nĂ€mligen huruvida fjĂ€rrvĂ€rme eller vĂ€rmepumpar Ă€r den bĂ€stalösningen för hushĂ„ll för flerbostadshus.Det föreslagna ramverket tillĂ€mpades framgĂ„ngsrikt pĂ„ fallstudien. Fallspecifika resultat gjorde detmöjligt att formulera mer generella slutsatser som Ă€r tillĂ€mpbara pĂ„ liknande flerbostadsomrĂ„den i ettsvenskt sammanhang. Det visas att samsimulering Ă€r ett anvĂ€ndbart tillvĂ€gagĂ„ngssĂ€tt för att fĂ„nga uppflaskhalsar och nya möjligheter i sektorkopplingen. Exempel Ă€r överbelastningar av elnĂ€t orsakade avinstallationer av vĂ€rmepumpar och kontroll av termisk massa i byggnader för att ersĂ€tta anvĂ€ndningen avtoppvĂ€rmepannor. Dock bör samsimulering begrĂ€nsas till fall dĂ€r reglerĂ„terkoppling mĂ„ste tas i beaktande,sĂ„som i de föregĂ„ende exemplen. Detta beror pĂ„ att samsimulering innebĂ€r en signifikant högreimplementeringskomplexitet och en lĂ€ngre berĂ€kningstid. SĂ„ledes bör exempelvis modellerna för ettvĂ€rmenĂ€t och av ett elnĂ€t utan kopplingsteknik- sĂ„som vĂ€rmepumpar och elektriska pannor- företrĂ€desvisanalyseras sekventiellt. NĂ€r det gĂ€ller nyckelprestationsindikatorer visade sig den i detta arbete infördanivellerade vĂ€rmekostnaden vara en viktig ny parameter nĂ€r man jĂ€mför energiinfrastrukturer utöver despecifika affĂ€rsaspekterna. Exempelvis visade byte av fjĂ€rrvĂ€rmetaxa till nivellerade vĂ€rmekostnad tydligtden ekonomiska fördelen med vĂ€rmenĂ€t jĂ€mfört med lokala vĂ€rmepumpar. CO2-utslĂ€ppsfaktorer för olikaenergiresurser (avfall, biomassa, elmix) visade sig vara mycket viktiga av tvĂ„ huvudskĂ€l. För det första leddeolika antaganden för dessa faktorer till motsatta slutsatser angĂ„ende koldioxidavtrycket för specifik teknik.Till exempel kan vĂ€rmepumpar uppskattas vara bĂ„de mer och mindre förorenande Ă€n fjĂ€rrvĂ€rme beroendepĂ„ de antagna utslĂ€ppsfaktorerna. För det andra befanns reglerstrategier baserade pĂ„koldioxidutslĂ€ppsfaktorerna i elmixen (kraft-till-vĂ€rme) vara en lovande sektorkopplingslösning. Genomatt analysera integrerade energisystem var det möjligt att fĂ„nga upp flaskhalsar i infrastrukturen och föreslĂ„nya alternativ. I synnerhet visades att installationen av ett stort antal distribuerade vĂ€rmepumpar kanöverbelasta elnĂ€tet i ett distrikt. Styrning av efterfrĂ„gesidan, genom tex anvĂ€ndning av den termiskamassan i byggnader och elfordons lagringskapacitet, kan hjĂ€lpa till att minska detta problem. PĂ„ andrasidan visade sig fjĂ€rrvĂ€rme vara ett Ă€nnu mer lovande alternativ genom att integrera bĂ„de styrning avefterfrĂ„gan och vĂ€rmeĂ„tervinning. VĂ€rmepumpar visade sig i detta fall vara en lĂ€mplig partnerteknik föratt stödja vĂ€rmeĂ„tervinning och möjliggöra kraft-till-vĂ€rme-kopplingen

    A co-simulation based framework for the analysis of integrated urban energy systems : Lessons from a Swedish case study

    No full text
    As major responsible for CO2 emissions, the energy sector is urgently called to take action against climatechange. The integration of renewable energy resources is a solution that, however, comes with a challenge.In fact, renewables are often variable, unpredictable and distributed. These characteristics add an extremecomplexity to the design and control of energy systems. Sector-coupling is nowadays strongly supported asa promising approach to increase the flexibility of these systems. For example, wind power curtailment canbe reduced by using the power surplus to operate heat pumps. When the wind does not blow, the heat storedin the thermal mass of the buildings and waste heat recovery can be used instead. These solutions are largelyavailable at district-to-city level. However, a suitable framework to design these integrated urban energysystems is missing.This thesis work proposes such a framework, as a set of methodological steps and integrated modellingtools. Among them, the modelling and simulation approach is a fundamental aspect. Given theheterogeneity of integrated energy systems, dedicated technology-specific models are developed and usedto achieve the required level of detail. A co-simulation method is implemented when time step coordinationand data exchange are necessary. Scenarios are developed to compare the techno-economic andenvironmental performance of alternative solutions, based on sector-coupling. Levelized cost of energy andCO2 emissions are used as main performance indicators for this purpose. In order to show the applicabilityof this methodology, Hammarby Sjöstad (Stockholm, Sweden) is selected as a case study. This also allowsto tackle a real local open issue, which is the definition of the best solution between district heating anddomestic heat pumps for multi-apartment buildings.The proposed framework was successfully applied to the case study. Case specific results allowed toformulate more general conclusions applicable to similar multi-apartment residential districts, in a Swedishcontext. It could be shown that co-simulation is a useful approach to capture sector-coupling bottlenecksand opportunities. Respective examples are electricity grid overloadings caused by installations of heatpumps and the control of thermal mass in buildings to replace the use of heat peak boilers. However, cosimulationshould be strictly limited to cases where control feedback loops need to be taken into account,such as in the previous examples. This is because it involves a higher implementation complexity and ahigher computational time. Thus, for example, the models of a heat network and of an electricity grid withno coupling technologies, such as heat pumps and electric boilers, should be preferably analyzedsequentially. The levelized cost of heat was found to be a game-changer parameter when comparing energyinfrastructures, beyond the specific business aspects. For example, the replacement of a district heatingtariff with its levelized cost of heat clearly showed the economic advantage of heat networks againstdomestic heat pumps. The CO2 emissions factors of different energy resources (waste, biomass, electricitymix) were shown to be highly critical for two main reasons. Firstly, different assumptions for these factorsled to opposite findings regarding the carbon footprint of specific technologies. For example, heat pumpscould be estimated as both more and less polluting than district heating, depending on the assumedemission factors. Secondly, control strategies based on the CO2 emission factors of the electricity supplymix (power-to-heat) were found to be a promising sector-coupling solution. By analyzing integrated energysystems, it was possible to assess uncovered bottlenecks and suggest new options. In particular, it wasshown that the installation of a large number of distributed heat pumps can overload the electricitydistribution grid in a district. Demand side management, through the thermal mass in buildings andvehicle-to-grid, could help alleviating this problem. On the other hand, district heating was found to be aneven more promising alternative, by integrating demand side management and heat recovery. Heat pumpswere shown to be a suitable partner technology for supporting heat recovery and enabling power-to-heat.DĂ„ energisektorn ansvarar för huvuddelen av vĂ€xthusutslĂ€ppen finns det behov att omgĂ„ende vidtaĂ„tgĂ€rder för att motverka klimatförĂ€ndringar. Integrationen av förnybara energiresurser Ă€r en lösning, dockkommer den med en del utmaningar. Förnybar energi Ă€r ofta variabel, oförutsĂ€gbar och distribuerad. Dessaegenskaper medför en ökad komplexitet nĂ€r det gĂ€ller utformning och styrning av energisystemsystemet.Ökad sektorkoppling mellan olika energislag Ă€r ett lovande tillvĂ€gagĂ„ngssĂ€tt för att öka flexibiliteten i dessasystem. Till exempel kan driftinskrĂ€nkningar för vindkraft minskas genom att anvĂ€nda kraftöverskottet föratt driva vĂ€rmepumpar. NĂ€r vinden inte blĂ„ser kan vĂ€rmen som lagras i byggnaders termiska massa ochĂ„tervinning av spillvĂ€rme anvĂ€ndas istĂ€llet. Dessa lösningar finns mestadels pĂ„ stads- och distriktsnivĂ„. EttlĂ€mpligt modelleringsramverk för att utforma dessa integrerade stadsenergisystem saknas dock.Det föreliggande arbete föreslĂ„r ett sĂ„dant ramverk som en uppsĂ€ttning av metodologiska steg ochintegrerade modelleringsverktyg. Tyngdpunkten ligger pĂ„ modellering och simulering. Med tanke pĂ„ deintegrerade energisystemens heterogenitet utvecklas dedikerade teknologispecifika modeller för att uppnÄönskad detaljnivĂ„. En samsimuleringsmetod implementeras nĂ€r tidsstegskoordinering och datautbyte Ă€rnödvĂ€ndiga mellan olika modeller. Scenarier utvecklas för att jĂ€mföra den tekno-ekonomiska ochmiljömĂ€ssiga prestandan hos alternativa lösningar baserat pĂ„ sektorkoppling. Nivellerade energikostnaderoch koldioxidutslĂ€pp anvĂ€nds som huvudindikatorer för detta Ă€ndamĂ„l. För att visa tillĂ€mpbarheten avdenna metod vĂ€ljs distriktet Hammarby Sjöstad (Stockholm, Sverige) som en fallstudie. Detta gör det ocksĂ„möjligt att ta itu med en real öppen frĂ„ga, nĂ€mligen huruvida fjĂ€rrvĂ€rme eller vĂ€rmepumpar Ă€r den bĂ€stalösningen för hushĂ„ll för flerbostadshus.Det föreslagna ramverket tillĂ€mpades framgĂ„ngsrikt pĂ„ fallstudien. Fallspecifika resultat gjorde detmöjligt att formulera mer generella slutsatser som Ă€r tillĂ€mpbara pĂ„ liknande flerbostadsomrĂ„den i ettsvenskt sammanhang. Det visas att samsimulering Ă€r ett anvĂ€ndbart tillvĂ€gagĂ„ngssĂ€tt för att fĂ„nga uppflaskhalsar och nya möjligheter i sektorkopplingen. Exempel Ă€r överbelastningar av elnĂ€t orsakade avinstallationer av vĂ€rmepumpar och kontroll av termisk massa i byggnader för att ersĂ€tta anvĂ€ndningen avtoppvĂ€rmepannor. Dock bör samsimulering begrĂ€nsas till fall dĂ€r reglerĂ„terkoppling mĂ„ste tas i beaktande,sĂ„som i de föregĂ„ende exemplen. Detta beror pĂ„ att samsimulering innebĂ€r en signifikant högreimplementeringskomplexitet och en lĂ€ngre berĂ€kningstid. SĂ„ledes bör exempelvis modellerna för ettvĂ€rmenĂ€t och av ett elnĂ€t utan kopplingsteknik- sĂ„som vĂ€rmepumpar och elektriska pannor- företrĂ€desvisanalyseras sekventiellt. NĂ€r det gĂ€ller nyckelprestationsindikatorer visade sig den i detta arbete infördanivellerade vĂ€rmekostnaden vara en viktig ny parameter nĂ€r man jĂ€mför energiinfrastrukturer utöver despecifika affĂ€rsaspekterna. Exempelvis visade byte av fjĂ€rrvĂ€rmetaxa till nivellerade vĂ€rmekostnad tydligtden ekonomiska fördelen med vĂ€rmenĂ€t jĂ€mfört med lokala vĂ€rmepumpar. CO2-utslĂ€ppsfaktorer för olikaenergiresurser (avfall, biomassa, elmix) visade sig vara mycket viktiga av tvĂ„ huvudskĂ€l. För det första leddeolika antaganden för dessa faktorer till motsatta slutsatser angĂ„ende koldioxidavtrycket för specifik teknik.Till exempel kan vĂ€rmepumpar uppskattas vara bĂ„de mer och mindre förorenande Ă€n fjĂ€rrvĂ€rme beroendepĂ„ de antagna utslĂ€ppsfaktorerna. För det andra befanns reglerstrategier baserade pĂ„koldioxidutslĂ€ppsfaktorerna i elmixen (kraft-till-vĂ€rme) vara en lovande sektorkopplingslösning. Genomatt analysera integrerade energisystem var det möjligt att fĂ„nga upp flaskhalsar i infrastrukturen och föreslĂ„nya alternativ. I synnerhet visades att installationen av ett stort antal distribuerade vĂ€rmepumpar kanöverbelasta elnĂ€tet i ett distrikt. Styrning av efterfrĂ„gesidan, genom tex anvĂ€ndning av den termiskamassan i byggnader och elfordons lagringskapacitet, kan hjĂ€lpa till att minska detta problem. PĂ„ andrasidan visade sig fjĂ€rrvĂ€rme vara ett Ă€nnu mer lovande alternativ genom att integrera bĂ„de styrning avefterfrĂ„gan och vĂ€rmeĂ„tervinning. VĂ€rmepumpar visade sig i detta fall vara en lĂ€mplig partnerteknik föratt stödja vĂ€rmeĂ„tervinning och möjliggöra kraft-till-vĂ€rme-kopplingen

    Techno-economic performance evaluation of direct steam generation solar tower plants with thermal energy storage systems based on high-temperature concrete and encapsulated phase change materials

    No full text
    Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase

    Multi-energy planning of a city neighbourhood and improved stakeholders’ engagement:application to a Swiss test-case

    No full text
    During the IntegrCiTy project, a novel urban energy planning approach was successfully tested. The latter combines stakeholder engagement with an innovative multi-energy model using different control strategies, while combining both energy demand and supply dynamics on selected zones. The applied control strategies applied to the energy networks show the potential gains linked to using synergies among networks and technologies, as to foster renewable energy penetration in the system. Thanks to the combined approach of advanced optimization techniques and stakeholder engagement, solutions can be identified much quicker. In addition, unfeasible solutions can be discarded at earlier stages of the planning process, based on the feedback of the stakeholders even though, from a pure mathematical and energy point of view, the solutions might be theoretically interesting to consider

    Techno-economic performance evaluation of solar tower plants with integrated multilayered PCM thermocline thermal energy storage: a comparative study to conventional two-tank storage systems

    No full text
    Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher investment costs and difficulties during the operation of the variable volume tanks. Instead, another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost up to 30% and maintain high efficiencies. This paper analyses a multi-layered solid PCM storage tank concept for solar tower applications, and describes a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. A detail model of the tank has been developed and introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme.Peer Reviewe

    Techno-economic performance evaluation of solar tower plants with integrated multilayered PCM thermocline thermal energy storage: a comparative study to conventional two-tank storage systems

    No full text
    Copyright 2016 AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher investment costs and difficulties during the operation of the variable volume tanks. Instead, another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost up to 30% and maintain high efficiencies. This paper analyses a multi-layered solid PCM storage tank concept for solar tower applications, and describes a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. A detail model of the tank has been developed and introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme.Peer Reviewe
    corecore