5 research outputs found

    Zinc isotopic variations in ureilites

    No full text
    The Ureilite Parent Body (UPB) was a C-rich planetary embryo disrupted by impact. Ureilites are fragments of the UPB mantle and among the most numerous achondrites. Zinc isotopic data are presented for 26 unbrecciated ureilites and a trachyandesite (ALM-A) from the same parent body. The ή66Zn values of ureilites range from 0.40 to 2.71 ‰ including literature results. Zinc isotopic compositions do not correlate with the compositions of olivine cores, with C and O isotopic compositions, with Zn abundances, nor with shock grades. The wide range of ή66Zn displayed by the ureilites is chiefly explained by evaporation processes that took place during the catastrophic breakup of the UPB. During breakup, the high temperatures of the UPB mantle allowed Zn to evaporate, regardless of the intensity the shock suffered by the ureilitic debris. For the most shocked of them, post-shock heating permitted greater evaporation, and heavier Zn isotopic compositions. The surface of the UPB was certainly much colder than the mantle before the breakup. Therefore, crustal rocks were probably less prone to Zn evaporation. ALM-A, the sole crustal rock analyzed at present, has a ή66Zn value (0.67 ‰) significantly higher than those of regular chondrites. This result indicates that its mantle source displayed already non-chondritic Zn isotopic compositions before the breakup of the UPB

    Microsecond Discharge Produced in Aqueous Solution for Pollutant Cr(VI) Reduction

    No full text
    This paper presents a detailed analysis of underwater electrical discharge parameters in the treatment of chromium (VI) used as a model pollutant to analyze the reduction process by plasma liquid interaction (PLI). Pin-to-pin microsecond discharges were performed in an aqueous Cr(VI) solution and the processes were characterized using electrical measurements, optical imaging and UV-Vis absorption measurements for [Cr(VI)] estimation. For the first time, the total reduction of Cr(VI) was successfully achieved by PLI process and a maximum energy yield of 4.7 × 10−4 g/kJ was obtained. Parametric studies on electrode geometry, applied voltage, electrodes gap and pulse duration are presented in detail. Finally, an analysis of the process is proposed by comparing our results of the energy yield calculation based on the injected energy with those of the literature and by providing an estimation of the global energy efficiency of the process

    Microsecond Discharge Produced in Aqueous Solution for Pollutant Cr(VI) Reduction

    No full text
    This paper presents a detailed analysis of underwater electrical discharge parameters in the treatment of chromium (VI) used as a model pollutant to analyze the reduction process by plasma liquid interaction (PLI). Pin-to-pin microsecond discharges were performed in an aqueous Cr(VI) solution and the processes were characterized using electrical measurements, optical imaging and UV-Vis absorption measurements for [Cr(VI)] estimation. For the first time, the total reduction of Cr(VI) was successfully achieved by PLI process and a maximum energy yield of 4.7 × 10−4 g/kJ was obtained. Parametric studies on electrode geometry, applied voltage, electrodes gap and pulse duration are presented in detail. Finally, an analysis of the process is proposed by comparing our results of the energy yield calculation based on the injected energy with those of the literature and by providing an estimation of the global energy efficiency of the process

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore