29 research outputs found

    Familial hemiplegic migraine CaV2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The R192Q mutation of the CACNA1A gene, encoding for the α1 subunit of voltage-gated P/Q Ca<sup>2+ </sup>channels (Ca<sub>v</sub>2.1), is associated with familial hemiplegic migraine-1. We investigated whether this gain-of-function mutation changed the structure and function of trigeminal neuron P2X<sub>3 </sub>receptors that are thought to be important contributors to migraine pain.</p> <p>Results</p> <p>Using in vitro trigeminal sensory neurons of a mouse genetic model knockin for the CACNA1A R192Q mutation, we performed patch clamp recording and intracellular Ca<sup>2+ </sup>imaging that showed how these knockin ganglion neurons generated P2X<sub>3 </sub>receptor-mediated responses significantly larger than wt neurons. These enhanced effects were reversed by the Ca<sub>v</sub>2.1 blocker ω-agatoxin. We, thus, explored intracellular signalling dependent on kinases and phosphatases to understand the molecular regulation of P2X<sub>3 </sub>receptors of knockin neurons. In such cells we observed strong activation of CaMKII reversed by ω-agatoxin treatment. The CaMKII inhibitor KN-93 blocked CaMKII phosphorylation and the hyperesponsive P2X<sub>3 </sub>phenotype. Although no significant difference in membrane expression of knockin receptors was found, serine phosphorylation of knockin P2X<sub>3 </sub>receptors was constitutively decreased and restored by KN-93. No change in threonine or tyrosine phosphorylation was detected. Finally, pharmacological inhibitors of the phosphatase calcineurin normalized the enhanced P2X<sub>3 </sub>receptor responses of knockin neurons and increased their serine phosphorylation.</p> <p>Conclusions</p> <p>The present results suggest that the CACNA1A mutation conferred a novel molecular phenotype to P2X<sub>3 </sub>receptors of trigeminal ganglion neurons via CaMKII-dependent activation of calcineurin that selectively impaired the serine phosphorylation state of such receptors, thus potentiating their effects in transducing trigeminal nociception.</p

    Epigenetic mechanisms in migraine: a promising avenue?

    Get PDF
    Migraine is a disabling common brain disorder typically characterized by attacks of severe headache and associated with autonomic and neurological symptoms. Its etiology is far from resolved. This review will focus on evidence that epigenetic mechanisms play an important role in disease etiology. Epigenetics comprise both DNA methylation and post-translational modifications of the tails of histone proteins, affecting chromatin structure and gene expression. Besides playing a role in establishing cellular and developmental stage-specific regulation of gene expression, epigenetic processes are also important for programming lasting cellular responses to environmental signals. Epigenetic mechanisms may explain how non-genetic endogenous and exogenous factors such as female sex hormones, stress hormones and inflammation trigger may modulate attack frequency. Developing drugs that specifically target epigenetic mechanisms may open up exciting new avenues for the prophylactic treatment of migraine

    Migraine, inflammatory bowel disease and celiac disease: A Mendelian randomization study.

    No full text
    ObjectiveTo assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease.BackgroundMigraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition.MethodsLinkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed.ResultsMigraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99-1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99-1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96-1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79-1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00-1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92-0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02-1.29, p = 0.025). However, the results were not significant after multiple testing correction.ConclusionsWe found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes

    Trigeminovascular calcitonin gene-related peptide function in <i>Cacna1a</i> R192Q-mutated knock-in mice

    No full text
    Familial hemiplegic migraine type 1 (FHM1) is a rare migraine subtype. Whereas transgenic knock-in mice with the human pathogenic FHM1 R192Q missense mutation in the Cacna1a gene reveal overall neuronal hyperexcitability, the effects on the trigeminovascular system and calcitonin gene-related peptide (CGRP) receptor are largely unknown. This gains relevance as blockade of CGRP and its receptor are therapeutic targets under development. Hence, we set out to test these effects in FHM1 mice. We characterized the trigeminovascular system of wild-type and FHM1 mice through: (i) in vivo capsaicin- and CGRP-induced dural vasodilation in a closed-cranial window; (ii) ex vivo KCl-induced CGRP release from isolated dura mater, trigeminal ganglion and trigeminal nucleus caudalis; and (iii) peripheral vascular function in vitro. In mutant mice, dural vasodilatory responses were significantly decreased compared to controls. The ex vivo release of CGRP was not different in the components of the trigeminovascular system between genotypes; however, sumatriptan diminished the release in the trigeminal ganglion, trigeminal nucleus caudalis and dura mater but only in wild-type mice. Peripheral vascular function was similar between genotypes. These data suggest that the R192Q mutation might be associated with trigeminovascular CGRP receptor desensitization. Novel antimigraine drugs should be able to revert this complex phenomenon.</p

    RVCL-S and CADASIL display distinct impaired vascular function

    No full text
    OBJECTIVE: We aimed to evaluate the role of endothelial-dependent and endothelial-independent vascular reactivity in retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), both cerebral small vessel diseases are considered models for stroke, vascular dementia, and migraine. METHODS: RVCL-S (n = 18) and CADASIL (n = 23) participants with TREX1 and NOTCH3 mutations, respectively, were compared with controls matched for age, body mass index, and sex (n = 26). Endothelial function was evaluated by flow-mediated vasodilatation, and endothelial-independent vascular reactivity (i.e., vascular smooth muscle cell function) was assessed by dermal blood flow response to capsaicin application. RESULTS: Flow-mediated vasodilatation was decreased in participants with RVCL-S compared with controls (2.32% ± 3.83% vs 5.76% ± 3.07% change in diameter, p = 0.023) but normal in participants with CADASIL. Vascular smooth muscle cell function was reduced in participants with CADASIL compared with controls (maximal dermal blood flow increase at 40 minutes after capsaicin: 1.38 ± 0.88 vs 2.22 ± 1.20 arbitrary units, p = 0.010) but normal in participants with RVCL-S. CONCLUSIONS: We identified endothelial dysfunction in RVCL-S and confirmed impaired vascular smooth muscle cell relaxation in CADASIL. Our findings may prove to be biomarkers for disease progression in both monogenic cerebral small vessel diseases and improve mechanistic insight in their pathophysiology. This may help in understanding common neurovascular disorders, including stroke, dementia, and migraine.status: publishe
    corecore