20 research outputs found

    Polyglutamic acid-based Crosslinked Doxorubicin Nanogels as an Anti-Metastatic Treatment for Triple Negative Breast Cancer

    Get PDF
    PreprintTreatment of triple negative breast cancer (TNBC)-associated metastasis represents an unmet clinical need, and we lack effective therapeutics for a disease that exhibits high relapse rates and associates with poor patient outcomes. Advanced nanosized drug delivery systems may enhance the efficacy of first-line chemotherapeutics by altering drug pharmacokinetics and enhancing tumor/metastasis targeting to signif-icantly improve efficacy and safety. Herein, we propose the application of injectable poly-amino acid-based nanogels (NGs) as a versatile hydrophilic drug delivery platform for the treatment of TNBC lung metastasis. We prepared biocompatible and biodegradable cross-linked NGs from polyglutamic acid (PGA) loaded with the chemotherapeutic agent doxorubicin (DOX). Our optimized synthetic procedures generated NGs of ~100 nm in size and 25 wt% drug loading content that became rapidly internalized in TNBC cell lines and displayed IC50 values comparable to the free form of DOX. Importantly, PGA-DOX NGs significantly inhibited lung metastases and almost completely suppressed lymph node metastases in a spontaneously metastatic orthotopic mouse TNBC model. Overall, our newly developed PGA-DOX NGs represent a potentially effective therapeutic strategy for the treatment of TNBC metastases.A.S-H thanks MC IEF actions (Project 302717). We thank Dr. M. A. Molina for AFM experiments, Ser-vicio SEM Cordoba (Argentina), and Mario Soriano Navarro from the electron microscopy service for Cryo-TEM pictures at CIPF. The authors would also like to thank Dr. Stuart P. Atkinson for his collabo-ration in the revision of the manuscript. This work has been supported by the European Research Council (grant ERC-CoG-2014-648831 “MyNano”), by the Spanish Ministry of Science and Innovation (SAF2013-44848-R, SAF2016-80427-R, RTI2018-099227-B-I00), by a Marie Curie IEF (Project 302717), and the Bundesministerium für Bildung und Forschung (BMBF) through the NanoMatFutur award (13N12561). Part of the equipment employed in this work has been funded by Generalitat Valen-ciana and co-financed with FEDER funds (PO FEDER of Comunitat Valenciana 2014–2020

    Tumor microenvironment-targeted poly-L-glutamic acid-based combination conjugate for enhanced triple negative breast cancer treatment

    Full text link
    [EN] The intrinsic characteristics of the tumor microenvironment (TME), including acidic pH and overexpression of hydrolytic enzymes, offer an exciting opportunity for the rational design of TME-drug delivery systems (DDS). We developed and characterized a pH-responsive biodegradable poly-L-glutamic acid (PGA)-based combination conjugate family with the aim of optimizing anticancer effects. We obtained combination conjugates bearing Doxorubicin (Dox) and aminoglutethimide (AGM) with two Dox loadings and two different hydrazone pH sensitive linkers that promote the specific release of Dox from the polymeric backbone within the TME. Low Dox loading coupled with a short hydrazone linker yielded optimal effects on primary tumor growth, lung metastasis (-90% reduction), and toxicological profile in a preclinical metastatic triple-negative breast cancer (TNBC) murine model. The use of transcriptomic analysis helped us to identify the molecular mechanisms responsible for such results including a differential immunomodulation and cell death pathways among the conjugates. This data highlights the advantages of targeting the TME, the therapeutic value of polymer-based combination approaches, and the utility of -omits-based analysis to accelerate anticancer DDS.The authors would like to thank Dr. Stuart P. Atkinson for his collaboration in manuscript preparation and English revision, and Irene Borreda for essential immunohistological support. This work has been supported by the European Research Council (grant ERC-CoG-2014-648831 "MyNano") and the Spanish Ministry of Science and Innovation (CTQ2010-18195, SAF2013-44848-R, BES-2008-006801, IPT-2012-0712-010000, Programa I3, and BIO2015-71658-R). LBN is funded through a University of South Florida-Helmsley Foundation award. FHL is funded through NIH grant. Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with FEDER funds (PO FEDER of Comunitat Valenciana 2014-2020).Arroyo-Crespo, JJ.; Armiñán, A.; Charbonnier, D.; Balzano-Nogueira, L.; Huertas-López, F.; Martí, C.; Tarazona Campos, S.... (2018). Tumor microenvironment-targeted poly-L-glutamic acid-based combination conjugate for enhanced triple negative breast cancer treatment. Biomaterials. 186:8-21. https://doi.org/10.1016/j.biomaterials.2018.09.02382118

    Characterization of triple‐negative breast cancer preclinical models provides functional evidence of metastatic progression

    Get PDF
    Triple‐negative breast cancer (TNBC), an aggressive, metastatic and recurrent breast cancer (BC) subtype, currently suffers from a lack of adequately described spontaneously metastatic preclinical models that faithfully reproduce the clinical scenario. We describe two preclinical spontaneously metastatic TNBC orthotopic murine models for the development of advanced therapeutics: an immunodeficient human MDA‐MB‐231‐Luc model and an immunocompetent mouse 4T1 model. Furthermore, we provide a broad range of multifactorial analysis for both models that could provide relevant information for the development of new therapies and diagnostic tools. Our comparisons uncovered differential growth rates, stromal arrangements and metabolic profiles in primary tumors, and the presence of cancer‐associated adipocyte infiltration in the MDA‐MB‐231‐Luc model. Histopathological studies highlighted the more rapid metastatic spread to the lungs in the 4T1 model following a lymphatic route, while we observed both homogeneous (MDA‐MB‐231‐Luc) and heterogeneous (4T1) metastatic spread to axillary lymph nodes. We encountered unique metabolomic signatures in each model, including crucial amino acids and cell membrane components. Hematological analysis demonstrated severe leukemoid and lymphoid reactions in the 4T1 model with the partial reestablishment of immune responses in the immunocompromised MDA‐MB‐231‐Luc model. Additionally, we discovered β‐immunoglobulinemia and increased basal levels of G‐CSF correlating with a metastatic switch, with G‐CSF also promoting extramedullary hematopoiesis (both models) and causing hepatosplenomegaly (4T1 model). Overall, we believe that the characterization of these preclinical models will foster the development of advanced therapeutic strategies for TNBC treatment, especially for the treatment of patients presenting both, primary tumors and metastatic spread

    Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates

    Get PDF
    Alzheimer’s disease (AD), the most prevalent form of dementia, remains incurable mainly due to our failings in the search for effective pharmacological strategies. Here, we describe the development of targeted multimodal polypeptide-based nanoconjugates as potential AD treatments. Treatment with polypeptide nanoconjugates bearing propargylamine moieties and bisdemethoxycurcumin or genistein afforded neuroprotection and displayed neurotrophic effects, as evidenced by an increase in dendritic density of pyramidal neurons in organotypic hippocampal culture. The additional conjugation of the Angiopep-2 targeting moiety enhanced nanoconjugate passage through the blood-brain barrier and modulated brain distribution with nanoconjugate accumulation in neurogenic areas, including the olfactory bulb. Nanoconjugate treatment effectively reduced neurotoxic β amyloid aggregate levels and rescued impairments to olfactory memory and object recognition in APP/PS1 transgenic AD model mice. Overall, this study provides a description of a targeted multimodal polyglutamate-based nanoconjugate with neuroprotective and neurotrophic potential for AD treatment

    Anticancer activity driven by drug linker modification in a polyglutamic acid-based combination-drug conjugate

    Get PDF
    Combination nanotherapies for the treatment of breast cancer permits synergistic drug targeting of multiple pathways. However, poor carrier degradability, poor synergism of the combined drugs, low drug release regulation, and a lack of control on final macromolecule solution conformation (which drives the biological fate) limit the application of this strategy. The present study describes the development of a family of drug delivery systems composed of chemotherapeutic (doxorubicin) and endocrine therapy (aromatase inhibitor aminoglutethimide) agents conjugated to a biodegradable poly‐l‐glutamic acid backbone via various linking moieties. Data from in vitro cytotoxicity and drug release assessments and animal model validation select a conjugate family member with optimal biological performance. Exhaustive physicochemical characterization in relevant media (including the study of secondary structure, size measurements, and detailed small‐angle neutron scattering analysis) correlates biological data with the intrinsic supramolecular characteristics of the conjugate. Overall, this study demonstrates how a small flexible Gly linker can modify the spatial conformation of the entire polymer–drug conjugate, promote the synergistic release of both drugs, and significantly improve biological activity. These findings highlight the need for a deeper understanding of polymer–drug conjugates at supramolecular level to allow the design of more effective polymer–drug conjugates

    In vivo Antitumor and ametastatic efficacy of a polyacetal-based paclitaxel conjugate for prostate cancer therapy

    Get PDF
    Prostate cancer (PCa), one of the leading causes of cancer-related deaths, currently lacks effective treatment for advanced-stage disease. Paclitaxel (PTX) is a highly active chemotherapeutic drug and the first-line treatment for PCa; however, conventional PTX formulation causes severe hypersensitivity reactions and limits PTX use at high concentrations. In the pursuit of high molecular weight, biodegradable, and pH-responsive polymeric carriers, we conjugated PTX to a polyacetal-based nanocarrier to yield a tert-Ser-PTX polyacetal conjugate. tert-Ser-PTX conjugate provides sustained release of PTX over two weeks in a pH-responsive manner while also obtaining a degree of epimerization of PTX to 7-epi-PTX. Serum proteins stabilize tert-Ser-PTX, with enhanced stability in human serum vs. PBS (pH 7.4). In vitro efficacy assessments in PCa cells demonstrated IC50 values above those for the free form of PTX due to the differential cell trafficking modes; however, in vivo tolerability assays demonstrated that tert-Ser-PTX significantly reduced the systemic toxicities associated with free PTX treatment. tert-Ser-PTX also effectively inhibited primary tumor growth and hematologic, lymphatic, and coelomic dissemination, as confirmed by in vivo and ex vivo bioluminescence imaging and histopathological evaluations in mice carrying orthotopic LNCaP tumors. Overall, our results suggest the application of tert-Ser-PTX as a robust anti-tumor/antimetastatic treatment for PCa

    Demonstrating the importance of polymer-conjugate conformation in solution on its therapeutic output: Diethylstilbestrol (DES)-polyacetals as prostate cancer treatment

    No full text
    The design of improved polymeric carriers to be used in the next generation of polymer therapeutics is an ongoing challenge. Biodegradable systems present potential advantages regarding safety benefit apart from the possibility to use higher molecular weight (Mw) carriers allowing PK optimization, by exploiting the enhanced permeability and retention (EPR)-mediated tumor targeting. Within this context, we previously designed pH-responsive polyacetalic systems, tert-polymers, where a drug with the adequate diol-functionality was incorporated within the polymer mainchain. The synthetic, non-steroidal estrogen, diethylstilboestrol (DES) clinically used for the treatment of advanced prostate cancer was chosen as drug. In order to improve the properties of this tert-polymer, novel polyacetalic systems as block-co-polymers, with more defined structure have been obtained. This second generation polyacetals allowed higher drug capacity than the tert-polymer, a biphasic DES release profile at acidic pH and due to its controlled amphiphilic character readily formed micelle-like structures in solution. These features result in an enhancement of conjugate therapeutic value in selected prostate cancer cell models. Exhaustive physico-chemical characterization focusing on nanoconjugate solution behavior and using advanced techniques, such as, pulsed-gradient spin-echo NMR (PGSE-NMR) and small-angle neutron scattering (SANS), has been carried out in order to demonstrate this hypothesis. Clear evidence of significantly different conformation in solution has been obtained for both polyacetals. These results demonstrate that an adequate control on molecular or supramolecular conformation in solution with polymer therapeutics is key in order to achieve the desired therapeutic output

    Identification of miR-187 putative targets by 2D-DIGE and LC-MS/MS.

    No full text
    <p>PC-3 cells were transfected either with miRNA mimic negative control or miR-187 miRNA mimic, harvested after 72h, and protein lysates were labeled with Cy3 or Cy5 (miR-187 and control) and Cy2 for the internal standard. A) 2D-DIGE gel image obtained at pH 3–10 and 12,5% SDS-polyacrilamide. The numbers refer to the identification given to the spots differentially expressed. Spot 655 was further identified by LC-MS/MS as ALDH1A3. B) Comparison of the expression of one of the spots (655 or ALDH1A3), in the six gels analyzed, between the cells transfected with miR-187 or with the negative control. The average fold change between the two conditions was -1.06 with a p-value of 0.003. ALDH1A3, aldehyde dehydrogenase family 1 member A3</p

    Diagnostic role of ALDH1A3 in urine samples.

    No full text
    <p>ROC curves from PSA and ALDH1A3 for predicting PCa in urine samples. The areas under the curve are 0.610 (95%CI 0.509–0.710; p = 0.036 and 0.591 (95% CI 0.490–0.692; p = 0.083) respectively. At a significance level of 10%, both PSA and ALDH1A3 were significantly associated with a positive biopsy of PCa.</p
    corecore