12 research outputs found

    Desarrollo de una herramienta completa de análisis y evaluación de riesgos en seguridad de presas

    Full text link
    En los últimos años, se ha producido en el panorama internacional un acercamiento del campo de la seguridad de presas hacia las metodologías basadas en riesgo, en las que se combina la probabilidad de ocurrencia de eventos indeseados y sus consecuencias asociadas. Este acercamiento se comprueba por ejemplo en la publicación de un boletín de la Comisión Internacional de Grandes Presas (ICOLD) dedicado exclusivamente al tema y en que una de las sesiones del último Congreso Internacional de Grandes presas estuviese dedicada a ello. En cuanto a las realizaciones de análisis concretos, estas han variado desde las más simplificadas y cualitativas hasta aplicaciones cuantitativas completas. Ante este panorama, el principal objetivo del presente trabajo es desarrollar una herramienta completa que permita realizar análisis de riesgos sobre cualquier presa o sistema de presas. En base a ello, el trabajo está dividido en cinco partes, que se resumen a continuación. La primera parte presenta los fundamentos teóricos del Análisis de Riesgo y trata de manera sistemática cada una de las variables que forman parte de un modelo de riesgo y las relaciones existentes entre ellas. A cada una de ellas se dedica un capítulo en el que se revisa el estado del arte en cuanto a su modelación, aportando también los conocimientos y visiones que se han ganado a lo largo del desarrollo de este trabajo. Esta parte del trabajo tiene asimismo una vocación de guía para la realización de Análisis de Riesgo. Por ello, se propone también un procedimiento general para llevar a cabo Análisis de Riesgo y se incluye un capítulo en el que se repasan los principales criterios de tolerabilidad de riesgo existentes a nivel internacional. En la segunda parte se desarrolla una conceptualización de los modelos de riesgo suficientemente general como para poder representar cualquier tipo de modelo de riesgo que se pueda emplear en seguridad de presas, pero también suficientemente intuitiva y compacta como para sSerrano Lombillo, AJ. (2011). Desarrollo de una herramienta completa de análisis y evaluación de riesgos en seguridad de presas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11400Palanci

    Dealing with epistemic uncertainty in risk-informed decision making for dam safety management

    Full text link
    [EN] In recent years, the application of risk analysis to inform dam safety governance has increased significantly. In this framework, considering explicitly and independently both natural and epistemic uncertainty in quantitative risk models allows to understand the sources of uncertainty in risk results and to estimate the effect of actions, tests, and surveys to reduce epistemic uncertainty. In this paper, Indexes of Coincidence are proposed to analyze the effect of epistemic uncertainty in the prioritization of investments based on risk results, which is the key issue in this paper. These indexes allow consideration of the convenience of conducting additional uncertainty reduction actions. These metrics have been applied to the prioritization of risk reduction measures for four concrete gravity dams in Spain. Results allow for a better understanding of how epistemic uncertainty of geotechnical resistance parameters influence risk-informed decision making. The proposed indexes are also useful for probabilistic risk analyses of other civil engineering structures with high epistemic uncertainty environments, since they analyze whether existing uncertainty could have an impact on decision making, outlining the need for extra studies, surveys and tests.Morales Torres, A.; Escuder Bueno, I.; Serrano Lombillo, AJ.; Castillo-Rodríguez, J. (2019). Dealing with epistemic uncertainty in risk-informed decision making for dam safety management. Reliability Engineering & System Safety. 191. https://doi.org/10.1016/j.ress.2019.106562S19

    The suitability of risk reduction indicators to inform dam safety management

    Full text link
    [EN] Risk analysis can provide very suitable and useful information to manage the safety of critical civil infrastructures. Indeed, results of quantitative risk models can be used to inform prioritisation of safety investments on infrastructures' assets and portfolios. In order to inform this prioritisation, a series of risk reduction indicators can be used. This paper reviews existing indicators for dam safety, tracks how equity and efficiency principles are captured, propose additional indicators and provides insights into how tolerability guidelines and benefit-cost analysis can also play a role in decision-making. All reviewed, analysed and/or combined indicators are later applied in a case study, a portfolio of 27 dams where 93 structural and non-structural investments are prioritised. The case study shows that prioritisation sequences based on risk model results provide suitable and useful information, acknowledging that other concerns may be conditioning decision-making processes. With the results of the case study, a full comparison between all studied risk reduction indicators is made, and three indexes are calculated for all of them to measure how close they are to a theoretical best.The Spanish Ministry of Economy and Competitiveness (MINECO) has supported the work described in this paper through the research project entitled IPRESARA (Incorporating man-made risk components into general dam risk management [BIA 2010-17852]) within the period 2011-2013 and the project INICIA (Methodology for assessing investments on water cycle infrastructures informed on risk and energy efficiency indicators [BIA 2013-48157-C2-1-R]) within the period 2014-2016.Morales Torres, A.; Serrano Lombillo, AJ.; Escuder Bueno, I.; Altarejos García, L. (2016). The suitability of risk reduction indicators to inform dam safety management. Structure and Infrastructure Engineering. 12(11):1465-1476. https://doi.org/10.1080/15732479.2015.1136830S146514761211Ayyub, B. M., McGill, W. L., & Kaminskiy, M. (2007). Critical Asset and Portfolio Risk Analysis: An All-Hazards Framework. Risk Analysis, 27(4), 789-801. doi:10.1111/j.1539-6924.2007.00911.xBaecher, G. B., Paté, M. E., & De Neufville, R. (1980). Risk of dam failure in benefit-cost analysis. Water Resources Research, 16(3), 449-456. doi:10.1029/wr016i003p00449Bohnenblust, H. (1998). Risk-Based Decision Making in the Transportation Sector. Quantified Societal Risk and Policy Making, 132-153. doi:10.1007/978-1-4757-2801-9_14Bottelberghs, P. . (2000). Risk analysis and safety policy developments in the Netherlands. Journal of Hazardous Materials, 71(1-3), 59-84. doi:10.1016/s0304-3894(99)00072-2De Blaeij, A., Florax, R. J. G. ., Rietveld, P., & Verhoef, E. (2003). The value of statistical life in road safety: a meta-analysis. Accident Analysis & Prevention, 35(6), 973-986. doi:10.1016/s0001-4575(02)00105-7Ellingwood, B. R. (2005). Risk-informed condition assessment of civil infrastructure: state of practice and research issues. Structure and Infrastructure Engineering, 1(1), 7-18. doi:10.1080/15732470412331289341Figueira, J., Greco, S., & Ehrogott, M. (2005). Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science. doi:10.1007/b100605Jonkman, S. N., Jongejan, R., & Maaskant, B. (2010). The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy-Nationwide Estimates of Societal Risk and Policy Applications. Risk Analysis, 31(2), 282-300. doi:10.1111/j.1539-6924.2010.01502.xJonkman, S. N., van Gelder, P. H. A. J. M., & Vrijling, J. K. (2003). An overview of quantitative risk measures for loss of life and economic damage. Journal of Hazardous Materials, 99(1), 1-30. doi:10.1016/s0304-3894(02)00283-2Joshi, N. N., & Lambert, J. H. (2007). Equity Metrics With Risk, Performance, and Cost Objectives for the Prioritization of Transportation Projects. IEEE Transactions on Engineering Management, 54(3), 539-547. doi:10.1109/tem.2007.900790Kabir, G., Sadiq, R., & Tesfamariam, S. (2013). A review of multi-criteria decision-making methods for infrastructure management. Structure and Infrastructure Engineering, 10(9), 1176-1210. doi:10.1080/15732479.2013.795978Kaplan, S. (1997). The Words of Risk Analysis. Risk Analysis, 17(4), 407-417. doi:10.1111/j.1539-6924.1997.tb00881.xKeeney, R. L., & Raiffa, H. (1993). Decisions with Multiple Objectives. doi:10.1017/cbo9781139174084Khadam, I. M., & Kaluarachchi, J. J. (2003). Multi-criteria decision analysis with probabilistic risk assessment for the management of contaminated ground water. Environmental Impact Assessment Review, 23(6), 683-721. doi:10.1016/s0195-9255(03)00117-3Lutter, R., Morrall, J. F., & Viscusi, W. K. (1999). THE COST-PER-LIFE-SAVED CUTOFF FOR SAFETY-ENHANCING REGULATIONS. Economic Inquiry, 37(4), 599-608. doi:10.1111/j.1465-7295.1999.tb01450.xRamsberg, J. A. L., & Sjoberg, L. (1997). The Cost-Effectiveness of Lifesaving Interventions in Sweden. Risk Analysis, 17(4), 467-478. doi:10.1111/j.1539-6924.1997.tb00887.xSaaty, T. L. (1988). What is the Analytic Hierarchy Process? Mathematical Models for Decision Support, 109-121. doi:10.1007/978-3-642-83555-1_5Stewart, M. G., & Mueller, J. (2008). A risk and cost-benefit assessment of United States aviation security measures. Journal of Transportation Security, 1(3), 143-159. doi:10.1007/s12198-008-0013-0Viscusi, W. K., & Aldy, J. E. (2003). Journal of Risk and Uncertainty, 27(1), 5-76. doi:10.1023/a:1025598106257Vrijling, J. (1995). A framework for risk evaluation. Journal of Hazardous Materials, 43(3), 245-261. doi:10.1016/0304-3894(95)91197-vYamano, N., & Ohkawara, T. (2000). The Regional Allocation of Public Investment: Efficiency or Equity? Journal of Regional Science, 40(2), 205-229. doi:10.1111/0022-4146.0017

    A new risk reduction indicator for dam safety management combining efficiency and equity principles

    Full text link
    [EN] Large dams are critical infrastructures whose failure could produce high economic and social consequences. Risk analysis has been shown to be a suitable methodology to assess these risks and to inform dam safety management. In this sense, risk reduction indicators are a useful tool to manage risk results, yielding potential prioritisation sequences of investments in dams portfolios. Risk management is usually informed by two basic principles: efficiency and equity. These two principles many times conflict, requiring a tradeoff between optimising the expenditures and providing a high level of protection to all individuals. In this paper, the risk reduction indicator Equity Weighted Adjusted Cost per Statistical Life Saved (EWACSLS) is presented. This indicator allows obtaining prioritisation sequences of investments while maintaining an equilibrium between equity and efficiency principles. In order to demonstrate its usefulness, it has been applied in a real-world case study, a portfolio of 27 dams where 93 structural and non-structural investments are prioritised. The EWACSLS indicator is analysed in detail and its results are compared with other existing risk reduction indicators, showing its flexibility and how it can be a very well balanced indicator for the purpose of prioritisation of risk reduction measures.This paper was published with the support of the research project ‘INICIA’ (Methodology for Assessing Investments on Water Cycle Infrastructures informed on Risk and Energy Efficiency Indicators, BIA2013-48157-C2- 1-R, 2014-2016); co-funded by the Spanish Ministry of Economy and Competitiveness ‘Ministerio de Economía y Competitividad’ (Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad); and the European Regional Development Fund (ERDF).Serrano Lombillo, AJ.; Morales Torres, A.; Escuder Bueno, I.; Altarejos García, L. (2016). A new risk reduction indicator for dam safety management combining efficiency and equity principles. Structure and Infrastructure Engineering. 13(9):1157-1166. https://doi.org/10.1080/15732479.2016.1245762S11571166139Blackorby, C., & Donaldson, D. (1977). Utility vs equity. Journal of Public Economics, 7(3), 365-381. doi:10.1016/0047-2727(77)90055-xBleichrodt, H. (1997). Health utility indices and equity considerations. Journal of Health Economics, 16(1), 65-91. doi:10.1016/s0167-6296(96)00508-5De Blaeij, A., Florax, R. J. G. ., Rietveld, P., & Verhoef, E. (2003). The value of statistical life in road safety: a meta-analysis. Accident Analysis & Prevention, 35(6), 973-986. doi:10.1016/s0001-4575(02)00105-7(2001). The Economic Journal, 111(471). doi:10.1111/ecoj.2001.111.issue-471Dolan, P. (1998). The measurement of individual utility and social welfare. Journal of Health Economics, 17(1), 39-52. doi:10.1016/s0167-6296(97)00022-2Dundar, H. (1999). Equity, quality and efficiency effects of reform in Turkish higher education. Higher Education Policy, 12(4), 343-366. doi:10.1016/s0952-8733(99)00016-1Jonkman, S. N., van Gelder, P. H. A. J. M., & Vrijling, J. K. (2003). An overview of quantitative risk measures for loss of life and economic damage. Journal of Hazardous Materials, 99(1), 1-30. doi:10.1016/s0304-3894(02)00283-2Joshi, N. N., & Lambert, J. H. (2007). Equity Metrics With Risk, Performance, and Cost Objectives for the Prioritization of Transportation Projects. IEEE Transactions on Engineering Management, 54(3), 539-547. doi:10.1109/tem.2007.900790(1997). Risk Analysis, 17(4). doi:10.1111/risk.1997.17.issue-4Khadam, I. M., & Kaluarachchi, J. J. (2003). Multi-criteria decision analysis with probabilistic risk assessment for the management of contaminated ground water. Environmental Impact Assessment Review, 23(6), 683-721. doi:10.1016/s0195-9255(03)00117-3Linnerooth-Bayer, J., & Amendola, A. (2000). Global Change, Natural Disasters and Loss-sharing: Issues of Efficiency and Equity. Geneva Papers on Risk and Insurance - Issues and Practice, 25(2), 203-219. doi:10.1111/1468-0440.00060(1999). Economic Inquiry, 37(4). doi:10.1111/ecin.1999.37.issue-4Morales-Torres, A., Serrano-Lombillo, A., Escuder-Bueno, I., & Altarejos-García, L. (2016). The suitability of risk reduction indicators to inform dam safety management. Structure and Infrastructure Engineering, 1-12. doi:10.1080/15732479.2015.1136830(2011). Risk Analysis, 31(6). doi:10.1111/risk.2011.31.issue-6Stewart, M. G., & Mueller, J. (2008). A risk and cost-benefit assessment of United States aviation security measures. Journal of Transportation Security, 1(3), 143-159. doi:10.1007/s12198-008-0013-0Yamano, N., & Ohkawara, T. (2000). The Regional Allocation of Public Investment: Efficiency or Equity? Journal of Regional Science, 40(2), 205-229. doi:10.1111/0022-4146.0017

    Inclusión en modelos de riesgo de presas de una metodología de estimación hidrológica basada en técnicas de Monte Carlo

    Get PDF
    En este estudio se aplica una metodología de obtención de las leyes de frecuencia derivadas (de caudales máximo vertidos y niveles máximos alcanzados) en un entorno de simulaciones de Monte Carlo, para su inclusión en un modelo de análisis de riesgo de presas. Se compara su comportamiento respecto del uso de leyes de frecuencia obtenidas con las técnicas tradicionalmente utilizadas

    Methodology for the Calculation of Annualized Incremental Risks in Systems of Dams

    Get PDF
    In the past few years, the field of dam safety has approached risk informed methodologies throughout the world and several methodologies and programs are appearing to aid in the systematization of the calculations. The most common way of implementing these calculations is through the use of event trees, computing event probabilities, and incremental consequences. This methodology is flexible enough for several situations, but its generalization to the case of systems of several dams is complex and its implementation in a completely general calculation methodology presents some problems. Retaining the event tree framework, a new methodology is proposed to calculate incremental risks. The main advantage of this proposed methodology is the ease with which it can be applied to systems of several dams: with a single risk model that describes the complete system and with a single calculation the incremental risks of the system can be obtained, being able to allocate the risk of each dam and of each failure mode. The article shows how both methodologies are equivalent and also applies them to a case study

    The value of integrating information from multiple hazards for flood risk analysis and management

    Full text link
    This article presents a methodology for estimating flood risk in urban areas integrating pluvial flooding, river flooding and failure of both small and large dams. The first part includes a review of basic concepts on flood risk analysis, evaluation and management. Flood risk analyses may be developed at local, regional and national level, however a general methodology to perform a quantitative flood risk analysis including different flood hazards is still required. The second part describes the proposed methodology, which presents an integrated approach - combining pluvial, river flooding and flooding from dam failure, as applied to a case study: an urban area located downstream of a dam under construction. The methodology enhances the approach developed within the SUFRI project ("Sustainable Strategies of Urban Flood Risk Management to cope with the residual risk", 2009-2011). This article also shows how outcomes from flood risk analysis provide better and more complete information to inform authorities, local entities and the stakeholders involved in decision-making with regard to flood risk management.The work presented in this paper has been supported by the Spanish Ministry of Science and Innovation (MICINN) through the grant to the budget of the SUFRI project (EUI 2008-03933) and of the iPRESARA project (BIA 2010-17852).Castillo Rodríguez, JT.; Escuder Bueno, I.; Altarejos García, L.; Serrano Lombillo, AJ. (2014). The value of integrating information from multiple hazards for flood risk analysis and management. Natural Hazards and Earth System Sciences. 14(2):379-400. doi:10.5194/nhess-14-379-2014S379400142ANCOLD: Guidelines on Risk Assessment, Australian National Committee on Large Dams Inc., Australia, 2003.Bowles, D. S.: ALARP Evaluation: Using Cost Effectiveness and Disproportionality to Justify Risk Reduction, ANCOLD Bull., 127, 89–104, 2004.Bowles, D. S., Giuliani, F. L., Hartford, D. N. D., Janssen, J. P. F. M. H., McGrath, S., Poupart, M., Stewart, D., and Zielinski, P. A.: ICOLD Bulletin 130 on "Risk Assessment in Dam Safety Management", IPENZ Proceedings of Technical Groups 33/2, Paris, France, 2005.COPUT: Plan de Acción Territorial de Carácter Sectorial sobre Prevención de Riesgo de Inundación en la Comunidad Valenciana (PATRICOVA), Conselleria d'Obres Públiques, Urbanisme i Territori, Valencia, Spain, 2002.Directive 2007/60/EC: Directive of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, 2007.Engel, H.: The flood event 2002 in the Elbe river basin causes of the flood, its course, statistical assessment and flood damages, Houille Blanche, 6, 33–36, https://doi.org/10.1051/lhb:200406003, 2004.Escuder-Bueno, I., Morales-Torres, A., and Perales-Momparler, S.: Urban Flood Risk Characterization as a tool for planning and managing, Report 10-R-8, Proceedings of the Workshop Exploration of Tolerable Risk Guidelines for the USACE Levee Safety Program, March 2010, Alexandria, Washington, D.C., 2010.Escuder-Bueno, I., Morales-Torres, A., Castillo-Rodríguez, J., Perales-Momparler, S., Ortner, S., Jöbstl, C., Knoblauch, H., Natale, L., and Petaccia, G.: SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision making, WP3 Final Report, SUFRI project (Sustainable Strategies of Urban Flood Risk Management), July 2011, Graz, Austria, 2011.Escuder-Bueno, I., Castillo-Rodríguez, J. T., Zechner, S., Jöbstl, C., Perales-Momparler, S., and Petaccia, G.: A quantitative flood risk analysis methodology for urban areas with integration of social research data, Nat. Hazards Earth Syst. Sci., 12, 2843–2863, https://doi.org/10.5194/nhess-12-2843-2012, 2012.Evans, A. W. and Verlander, N. Q.: What is wrong with criterion FN lines for judging the tolerability of risk, Risk Analysis, 17, 157–168, 1997.Frey, H. C. and Patil, S. R.: Identification and review of sensitivity analysis methods, Risk Analysis, 22, 553–78, 2002.Gouldby, B.: Uncertainty and sensitivity analysis: Method description, FLOODsite project, Report: T24-10-07, HR Wallingford, UK, 2007.Gouldby, B. and Samuels, P.: Language of risk: Project definitions, FLOODsite project, Report: T32-04-01, HR Wallingford, UK, 2005.Halpin, E.: Use of Tolerable Risk Guidelines in Levee Safety Decision Making, Executive Summary from the International Workshop in Tolerable Risk Guidelines for Levees, 17–18 March 2010, Washington, 2010.ICOLD: Risk Assessment in Dam Safety Management: A Reconnaissance of Benefits, Methods and Current Applications, International Commission on Large Dams, Bulletin 130, 2005.IEC: International Standard, Risk management – Risk assessment techniques, International Organization for Standardization, IEC/FDIS 31010:2009, 2009.Jonkman, S. N.: Global Perspectives on Loss of Human Life Caused by Floods, Nat. Hazards, 34, 151–175, 2005.Jonkman, S. N.: Loss of life estimation in flood risk assessment, Ph.D. thesis, Delft University of Technology, Delft, the Netherlands, 2007.Jonkman, S. N., Maaskant, B., Boyd, E., and Levitan, M. L.: Loss of Life Caused by the Flooding of New Orleans After Hurricane Katrina: Analysis of the Relationship Between Flood Characteristics and Mortality, Risk Analysis, 29, 676–98, https://doi.org/10.1111/j.1539-6924.2008.01190.x, 2009.Jonkman, S. N., Jongejan, R., and Maaskant, B.: The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy – Nationwide Estimates of Societal Risk and Policy Applications, Risk Analysis, 31, 282–300, https://doi.org/10.1111/j.1539-6924.2010.01502.x, 2011.Klijn, F., Samuels, P., and van Os, D.: Towards Flood Risk Management in the EU: State of affairs with examples from various European countries, Int. J. River Basin Manage., 6, 307–321, 2008.Merz, B. and Thieken, A.: Separating natural and epistemic uncertainty in flood frequency analysis, J. Hydrol., 309, 114–134, 2005.Merz, B. and Thieken, A.: Flood risk curves and uncertainty bounds, Nat. Hazards, 51, 437–458, 2009.Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article "Assessment of economic flood damage", Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.Messner, F., Penning-Rowsell, E., Green, C., Meyer, V., Tunstall, S., and van der Veen, A.: FLOODSITE Evaluating flood damages: guidance and recommendations on principles and methods, Report T09-06-01, FLOODsite Consortium, UK, 2007.Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.Munger, D. F., Bowles, D. S., Boyer, D. D., Davis, D. W., Margo, D. A., Moser, D. A., and Regan, P. J.: Interim tolerable risk guidelines for US Army Corps of Engineers Dams, USSD Conference, 20–24 April 2009, Nashville, Tennessee, 2009.Pappenberger, F., Beven, K. J., Ratto, M., and Matgen, P.: Multi-method global sensitivity analysis of flood inundation models, Adv. Water Resour., 31, 1–14, 2008.Parker, D., Tunstall, S., and Wilson, T.: Socio-economic benefits of flood forecasting and warning, Flood Hazard Research Centre, Middlesex University, Queensway, Enfield, London, UK, 2005.Pelling, M.: The vulnerability of cities – Natural disasters and social resilience, Earthscan Publications Ltd., London, UK, 2003.Penning-Rowsell, E., Chatterton, J. B., and Parker, D.: The Effect of Flood Warnings on Flood Damage Reduction, Middlesex Polytechnic Flood Hazard Research Project, Flood Hazard Research Centre, Middlesex University, Middleesex, UK, 1978.PGOU: Plan General de Ordenación Urbana, Urban General Plan, City of Benaguasil (Valencia), Benaguasil, Spain, 2009.Rackwitz, R.: Optimization and risk acceptability based on the Life Quality Index, Struct. Safety, 24, 297–331, 2002.Sanz-Jiménez, D., Escuder-Bueno, I., and Silva-Tulla, F.: Quantitative risk analysis for a dam under construction in Spain, Proc. of the 32nd Annual USSD Conference, 23–25 April 2012, United States Society on Dams, New Orleans, Louisiana, 2012.Schanze, J., Hutter, G., Olfert, A., Penning-Rowsell, E. C., Parker, D., Harries, T., Werritty, A., Nachtnebel, H., Holzmann, H., Neuhold, C., Meyer, V., Kuhlicke, C., Schildt, A., Jessel, B., and Königer, P.: FLOOD-ERA Joint Report, CRUE Research Report No. I-1: Systematisation, evaluation and context conditions of structural and non-structural measures for flood risk reduction, Project Contract No. ERAC-CT-2004-515742, CRUE Funding Initiative on Flood Risk Management Research, London, 2008.Serrano-Lombillo, A., Escuder-Bueno, I., de Membrillera-Ortuño, M. G., and Altarejos-García, L.: iPresas – Software for risk analysis, 23rd International Congress on Large Dams, 25–29 May 2009, Brasilia, Brazil, 2009.SPANCOLD: Risk Analysis as applied to dam safety, Technical Guide on Operation of Dams and Reservoirs, Technical Guides on Dam safety, No. 8, Vol. 1, Spanish National Committee on Large Dams, Madrid, 91–93, 2012.Thieken, A. and Beurton, S.: Synthesis Report, Addressing the key findings of research related to Flood resilient communities – managing the consequences of flooding, CRUE Flood Risk Management Research Monograph Series, CRUE Synthesis Report No. II-2012, published by ERA-NET CRUE, London, 2012.USACE: Economic Guidance Memorandum (EGM) 01-03, Generic Depth-Damage Relationships, United States Army Corps of Engineers, Washington, 2000.Van der Most, H.: Equity and efficiency considerations in setting standards for flood protection, in: FRIAR 2010 Conference, May 2010, Milano, Italy, 2010.Vrijling, J. K.: Probabilistic design of water defence systems in The Netherlands, Reliabil. Eng. Syst. Safety, 74, 337–344, 2001.WMO/GWP: Urban flood risk management, A Tool for Integrated Flood Management, World Meteorological Organization (WNO) & Global Water Partnership (GWP), Associated Programme on Flood Management, Geneva, Switzerland, 2008

    Assessing the impact of uncertainty on flood risk estimates with reliability analysis using 1-D and 2-D hydraulic models

    Get PDF
    This paper addresses the use of reliability techniques such as Rosenblueth¿s Point-Estimate Method (PEM) as a practical alternative to more precise Monte Carlo approaches to get estimates of the mean and variance of uncertain flood parameters water depth and velocity. These parameters define the flood severity, which is a concept used for decision-making in the context of flood risk assessment. The method proposed is particularly useful when the degree of complexity of the hydraulic models makes Monte Carlo inapplicable in terms of computing time, but when a measure of the variability of these parameters is still needed. The capacity of PEM, which is a special case of numerical quadrature based on orthogonal polynomials, to evaluate the first two moments of performance functions such as the water depth and velocity is demonstrated in the case of a single river reach using a 1-D HEC-RAS model. It is shown that in some cases, using a simple variable transformation, statistical distributions of both water depth and velocity approximate the lognormal. As this distribution is fully defined by its mean and variance, PEM can be used to define the full probability distribution function of these flood parameters and so allowing for probability estimations of flood severity. Then, an application of the method to the same river reach using a 2-D Shallow Water Equations (SWE) model is performed. Flood maps of mean and standard deviation of water depth and velocity are obtained, and uncertainty in the extension of flooded areas with different severity levels is assessed. It is recognized, though, that whenever application of Monte Carlo method is practically feasible, it is a preferred approach.This work is part of the research project "Incorporacion de los componentes de riesgo antropico a los sistemas de gestion integral de seguridad de presas y embalses" BIA2010-17852, funded by Spain's Ministerio de Ciencia e Innovacion and FEDER funds.Altarejos García, L.; Martínez Chenoll, ML.; Escuder Bueno, I.; Serrano Lombillo, AJ. (2012). Assessing the impact of uncertainty on flood risk estimates with reliability analysis using 1-D and 2-D hydraulic models. Hydrology and Earth System Sciences and Discussions. 16(7):1985-1994. https://doi.org/10.5194/hess-16-1895-2012S19851994167Aronica, G., Hankin, B., and Beven, K. J.: Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data, Adv. Water Resour., 22, 349–365, 1998.Berz, G.: Flood disaster: Lessons from the past-worries for the future, Water Manage. Mar. Eng., 142, 1–10, 2000.Beven, K. J. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992.Bladé, E., Gómez, M., and Dolz, J.: Quasi-two dimensional modelling of flood routing in rivers and flood plains by means of storage cells, in: Modelling of Flood Propagation Over Initially Dry Areas, edited by: Molinaro, P. and Natal, L., American Society of Engineers, Milan, 1994.Box, G. E. P. and Draper, N. R.: Empirical model building and response surfaces, Wiley, 1987.CEDEX: IBER, Two-dimensional model of free surface shallow water flow, available at: http://www.iberaula.es/web/index.php (last access: 4 July 2012), 2010.Cesare, M. A.: First order analysis of open-channel flow, J. Hydraul. Eng.-ASCE, 117, 242–247, 1991.Christian, J. T. and Baecher, G. B.: Point-estimate method as numerical quadrature, J. Geotech. Geoenviron., 125, 779–786, 1999.Cobby, D. M., Mason, D. C., and Davenport, I. J.: Image processing of airborne scanning laser altimetry data for improved river flood modelling, ISPRS J. Photogramm., 56, 121–138, 2001.Cook, A. and Merwade, V.: Effect of topographic data, geometric configurations and modelling approach on flood inundation mapping, J. Hydrol., 377, 131–142, 2009.DEFRA Department for Environment, Food and Rural Affairs: Draft Flood and Water Management Bill, Welsh Assembly Government, 2009.Deltares: SOBEK, available at: http://www.deltaressystems.com/hydro/product (last access: 4 July 2012), 2011.Der Kiureghian, A. and Ditlevsen, O.: Aleatory or epistemic? Does it matter?, Special workshop on risk acceptance and risk communication, Stanford University, 2007.DHI: MIKE FLOOD, available at: http://www.mikebydhi.com/Products.aspx (last access: 4 July 2012), 2011.Escuder-Bueno, I., Castillo-Rodríguez, J. T., Perales-Momparler, S., and Morales-Torres, A.: SUFRI Methodology for flood risk evaluation in urban areas, Decision guidance for decision maker, Report SUFRI project, WP3, CRUE-ERANET, Graz, Austria, 2011.Estrela, T. and Quintas, L.: El modelo de flujo bidimensional GISPLANA, Revista de Obras Públicas, 104, 13–21, 1996.ETH Zurich: BASEMENT – Basic Simulation Environment for computation of environmental flow and natural hazard simulation, Version 2.2, edited by: Faeh, R., Mueller, R., Rousselot, P., Vetsch, D., Volz, C., Vonwiller, L., Veprek, R. and Farshi, D., ETH Zurich, 2006–2011.European Parliament: Directive 2007/60/EC on the assessment and management of flood risks, Official Journal of the European Union, October 2009.Finaud-Guyon, P., Delenne, C., Guinot, C., and Llovel, C.: 1D–2D coupling for river flow modelling, CR. Mecànique, 339, 226–234, 2011.Gracia, A., Godé, L., Crego, E., Arrabal, M. A., Guirado, V., García, G., Lobera, C., González, S., and Martínez, E.: Riesgos y cuantificación de daños por inundación, 5o^o Congreso Internacional de Ordenación del Territorio sobre Gestión Compartida de Recursos Hídricos Internacionales, Lisboa, 2010.Gregory, M., Walker, B., Yi, S., Cunningham, B., and Kjelds, J.: Case studies in automated floodplain mapping, Proceedings of flood management ASCE conference, American Society of Civil Engineers, Reston, USA, 2007.Halcrow: ISIS 2D software, available at: http://www.halcrow.com/isis/isis2d.asp (last access: 4 July 2012), 2011.Harr, M. E.: Reliability-based design in civil engineering, John Wiley and Sons, New York, USA, 1987.He, H., Yu, Q., Zhou, J., Tian, Y. Q., and Chen, R. F.: Modelling complex flood flow evolution in the middle yellow river basin China, J. Hydrol., 353, 76–92, 2008.Helmio, T.: Unsteady 1D flow model of a river with partially vegetated floodplains application to the Rhine river, Environ. Modell. Softw., 20, 361–375, 2005.Hoek, E.: Practical Rock Engineering, online course, available at: http://www.rocscience.com/education/hoeks_corner (last access: 4 July 2012), 2007.Horrit, M. S.: A linearized approach to flow resistance uncertainty in a 2-D finite volume model of flood flow, J. Hydrol., 316, 13–27, 2006.Horrit, M. S. and Bates, P. D.: Evaluation of 1D and 2D numerical models for predicting river flood inundation, J. Hydrol., 268, 87–99, 2002.Inclam-University of Zaragoza, Departamento de mecánica de fluidos, Guad 2D Flow Software, Manual de Usuario, V1.1., 2011.Innovyze: Infoworks RS software, available at: http://www.innovyze.com/products.aspx (last access: 4 July 2012), 2011.Johnson, P. A.: Uncertainty of Hydraulic Parameters, J. Hydraul. Eng.-ASCE, 122, 112–114, 1996.Kelly, K. S. and Krzysztofowicz, R.: A bivariate meta-Gaussian density for use in hydrology, Stoch. Hydrol. Hydraul., 11, 17–31, 1997.Kuiry, S. N., Sen, D., and Bates, P. D.: Coupled 1D-Quasi-2D flood inundation model with unstructured grids, J. Hydraul. Eng.-ASCE, 136, 493–506, 2010.Kun-Yeun, H., Jong-Tae, L., and Jae-Hong, P.: Flood inundation analysis resulting from levee-break, J. Hydraul. Res., 36, 747–759, 1998.Latorre, B., Burguete, J., Murillo, J., Brufau, P., García-Navarro, P., Petaccia, G., Calvo, B., and Savi, F.: Flood wave simulation with 1D-2D coupled models, Proc. CCWI, Taylor and Francis, London, CCWI, 2009.Liu, D. S. and Matthies, H. G.: Uncertainty quantification with spectral approximations of a flood model, IOP Conf. Ser.: Mater. Sci. Eng., 10, 012208, https://doi.org/10.1088/1757-899X/10/1/012208, 2010.Mason, D. C., Cobby, D. M., Horrit, M. S., and Bates, P. D.: Flood plain friction parameterisation in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry, Hydrol. Process., 17, 1711–1732, 2003.Mays, L. W. and Tung, Y. K.: Hydrosystems engineering and management, McGraw-Hill, New York, 1992.Murillo, J., García-Navarro, P., Burguete, J., and Brufau, P.: The influence of source terms on stability, accuracy and conservation in two-dimensional shallow flow simulation using triangular finite volumes, Int. J. Numer. Meth. Fluids, 54, 543–590, 2007.Murillo, J., Rodríguez-Pallarés, M., Andrés-Urrutia, A., Brufau, P., and García-Navarro, P.: A mathematical model for numerical simulation of shallow water flow: Description and practical application of GUAD 2D, Proc. of the iEMSs 2008, Int. Env. Mod. Soft. Soc., 3, 1431–1438, 2008.Olivera, F., Rodríguez, M., and Murillo, J.: Floodplain delineation of the Ranillas Meander in Zaragoza using GUAD-2D, Proc. World Env. Water Resour. Congress, American Society of Civil Engineers, Reston, USA, 2008.Palisade Corporation: @RISK software, User`s Manual, available at: http://www.palisade.com/support/manuals.asp (last access: 4 July 2012), 2005.Pappenberger, F., Beven, K., Horrit, M., and Blazkova, S.: Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, J. Hydrol., 302, 46–49, 2005.Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R., and Matgen, P.: Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations, Hydrol. Earth Syst. Sci., 11, 739–752, https://doi.org/10.5194/hess-11-739-2007, 2007.Remo, J. W. F., Pinter, N., and Heine, R.: The use of retro and scenario modelling to assess effects of 100+ years river of engineering and land cover change on middle and lower Mississipi flood stages, J. Hydrol., 269, 79–88, 2009.Romanowicz, R. and Beven, K.: Dynamic real-time prediction of flood inundation probabilities, Hydrolog. Sci. J., 43, 181–196, 1998.Rosenblueth, E.: Two-point estimates in probabilities, Appl. Math. Model., 5, 329–335, 1981.Rubinstein, R. Y.: Simulation and the Monte Carlo Method, John Wiley & Sons, 1981.Sanders, B. F.: Evaluation of on line DEMs for flood inundation modelling, Adv. Water Resour., 20, 1831–1843, 2007.Sarino and Serrano, S. E.: Development of the instantaneous unit hydrograph using stochastic differential equations, Stoch. Hydrol. Hydraul., 4, 151–160, 1990.Shatnawu, F. M. and Goodall, J. L.: Comparison of flood top width predictions using surveyed and lidar derived channel geometries, J. Hydrol. Eng., 15, 97–106, 2010.Shrestha, D. L. and Solomatine, D. P.: Data-driven approaches for estimating uncertainty in rainfall runoff modelling, Int. J. River Basin Manage., 6, 109–122, 2008.UNWWAP – United Nations World Water Assessment Programme: Global trends in water-related disasters, an insight for policymakers, United Nations, 2009.USACE: Hydraulic Engineering Center, Accuracy of computed water surface profiles, Technical report, Hydraulic Engineering Center, Davis, Calif., 1986.USACE: HEC-RAS River Analysis System User's Manual, available at: http://www.hec.usace.army.mil (last access: 4 July 2012), 2002.USACE: HEC-FDA Flood Damage Reduction Analysis User's Manual, available at: http://www.hec.usace.army.mil/software/hec-fda/documentation/CPD-72_V1.2.4.pdf (last access: 4 July 2012), 2008.Vallés-Morán, F. J., Escuder-Bueno, I., Andrés-Doménech, I., and Benavent-Gascón, C.: Modelos hidráulicos para la evaluación de estructuras fluviales de protección: cola del embalse de Arenós, Castellón, in: Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, edited by: Escuder-Bueno, I., Matheu, E., Altarejos-García, L., and Castillo-Rodríguez, J. T., Taylor and Francis, London, 2012.Van der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD: a GIS-based distributed model for river-basin scale water balance and flood simulation, Int. J. Geogr. Inf. Sci., 24, 189–212, 2010.Wohl, E. E.: Uncertainty in flood estimates associated with roughness coefficient, J. Hydraul. Eng.-ASCE, 124, 219–223, 1998.Wright, N. G., Villanueva, I., Bates, P. D., Mason, D. C., Wilson, M. D., Pender, G., and Neelz, S.: Case study of the use of remotely sensed data for modelling flood inundation on the river Severn, U.K., J. Hydrol. Eng., 134, 533–540, 2008.Yeh, K. C. and Tung, Y. K.: Uncertainty and sensitivity analysis of pit-migration model, J. Hydraul. Eng.-ASCE, 119, 262–283, 1993.Yoshida, H. and Dittrich, A.: 1D unsteady state flow simulation of a section of the upper Rhine, J. Hydrol., 269, 79–88, 2002.Yue, S., Taha, B. M., Ouarda, J., Bobeé, B., Legendre, P., and Bruneau, P.: Approach for describing statistical properties of flood hydrograph, J. Hydrol. Eng., 7, 147–153, 2002

    Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis

    Full text link
    Dam safety based on risk analysis methodologies demand quantification of the risk of the dam-reservoir system. This means that, for a given initial state of the system, and for the several failure modes considered, it is necessary to estimate the probability of the load events and the conditional probability of response of the system for a given load event, as well as estimating the consequences on the environment for the obtained response of the system. The following paper focuses in the second of these probabilities, that is, quantifying the conditional probability of response of the system, for a given load event, and for the specific case of concrete gravity dams. Dam-reservoir systems have a complex behavior which has been tackled traditionally by simplifications in the formulation of the models and adoption of safety factors. The purpose of the methodology described in this paper is to improve the estimation of the conditional probability of response of the dam-reservoir system for concrete gravity dams, using complex behavior models based on numerical simulation techniques, together with reliability techniques of different levels of precision are applied, including Level 3 reliability techniques with Monte Carlo simulation. The paper includes an example of application of the proposed methodology to a Spanish concrete gravity dam, considering the failure mode of sliding along the rock-concrete interface. In the context of risk analysis, the results obtained for conditional probability of failure allow several conclusions related to their validity and safety implications that acquire a significant relevance due to the innovation of the study performedAltarejos García, L.; Escuder Bueno, I.; Serrano Lombillo, AJ.; Gómez De Membrillera Ortuño, M. (2012). Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis. Structural Safety. 34(1):1-13. https://doi.org/10.1016/j.strusafe.2012.01.001S11334

    Building fragility curves of sliding failure of concrete gravity dams integrating natural and epistemic uncertainties

    Full text link
    [EN] The proposed procedure combines the concepts of the Electrical Power Research Institute (EPRI) guidelines to develop fragility curves for the nuclear industry with existing reliability techniques for computing fragility curves in the context of concrete dams engineering. The procedure has been applied to a dam to illustrate how it can be used in a real case in such a manner that fragility curves are obtained integrating natural and epistemic uncertainties without losing track of their separate contribution to risk results. (C) 2016 Elsevier Ltd. All rights reserved.This paper was published with the support of the research project "INICIA" (Methodology for Assessing Investments on Water Cycle Infrastructures informed on Risk and Energy Efficiency Indicators, BIA2013-48157-C2-1-R, 2014-2016), co-funded by the Spanish Ministry of Economy and Competitiveness "Ministerio de Economia y Competitividad" (Programa Estatal de Investigacion, Desarrollo e Innovation Orientada a los Retos de la Sociedad) and the European Regional Development Fund (ERDF).Morales Torres, A.; Escuder Bueno, I.; Altarejos García, L.; Serrano Lombillo, AJ. (2016). Building fragility curves of sliding failure of concrete gravity dams integrating natural and epistemic uncertainties. Engineering Structures. 125:227-235. https://doi.org/10.1016/j.engstruct.2016.07.006S22723512
    corecore