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Abstract. This paper addresses the use of reliability tech-
niques such as Rosenblueth’s Point-Estimate Method (PEM)
as a practical alternative to more precise Monte Carlo ap-
proaches to get estimates of the mean and variance of un-
certain flood parameters water depth and velocity. These pa-
rameters define the flood severity, which is a concept used
for decision-making in the context of flood risk assessment.
The method proposed is particularly useful when the degree
of complexity of the hydraulic models makes Monte Carlo
inapplicable in terms of computing time, but when a mea-
sure of the variability of these parameters is still needed.
The capacity of PEM, which is a special case of numerical
quadrature based on orthogonal polynomials, to evaluate the
first two moments of performance functions such as the wa-
ter depth and velocity is demonstrated in the case of a single
river reach using a 1-D HEC-RAS model. It is shown that
in some cases, using a simple variable transformation, statis-
tical distributions of both water depth and velocity approx-
imate the lognormal. As this distribution is fully defined by
its mean and variance, PEM can be used to define the full
probability distribution function of these flood parameters
and so allowing for probability estimations of flood severity.
Then, an application of the method to the same river reach
using a 2-D Shallow Water Equations (SWE) model is per-
formed. Flood maps of mean and standard deviation of water
depth and velocity are obtained, and uncertainty in the ex-
tension of flooded areas with different severity levels is as-
sessed. It is recognized, though, that whenever application of
Monte Carlo method is practically feasible, it is a preferred
approach.

1 Introduction

Flooding poses a risk to people and causes significant eco-
nomic costs. In the last century flood disasters accounted for
12 % of all deaths from natural hazards (DEFRA, 2009). The
number of flood disasters registered during the period 1990–
1998 was more than those in the period 1950–1985, and the
associated economic losses were seven times higher (Berz,
2000). During the period 2000 to 2006 water-related disas-
ters killed more than 290 000 people, affecting more than
1.5 billion, and inflicting more than US$ 422 billion of dam-
age (UNWWAP, 2009). Though the operation of flood disas-
ters defence systems contribute to reduce risks, these cannot
be completely eliminated and non-structural measures such
as flood forecasting, warning, planning and others become
even more significant on reducing flood disasters risk. For
this reason, there is a requirement for methods to estimate
flood disasters risk (societal and economical risk) and the ef-
fect of structural and non-structural measures on risk reduc-
tion (Escuder-Bueno et al., 2011). Flood disasters risk can
be defined as the combination of the probability of a flood
event, called hazard, with the potential adverse consequences
for human health, the environment, cultural heritage and eco-
nomic activity associated with a flood event (European Par-
liament, Directive 2007/60/EC), called vulnerability. Risk is
commonly expressed by the notation

Risk = Hazards× Vulnerability. (1)

Its units are the ones used for measuring the vulnerability
divided per time, for instance a monetary unit or a number
of victims per year, because the hazard probability has units
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of time−1. Flood disasters risks can be analyzed by calculat-
ing the probability of an event occurring and the subsequent
impact that it has on a receptor.

Hazard in risk models can be expressed as

Hazard= Load Probability× System Response. (2)

The Load corresponds to the hydrological input, usually
identified by a flow discharge. The Load Probability has units
of time−1. The System Response, when uncertainties are in-
corporated into the models, is a conditional probability and
has no units. The System Response is usually expressed in
terms of velocity,v, water depth,y, and extension of the
flooded area,Af . These parameters are outputs of the flood
model and can be considered as performance functions of
the system. Vulnerability in terms of loss of lives includes the
computation of population at risk and fatality rates. The fatal-
ity rates can be calculated as a function of flood severity and
warning time. Vulnerability in terms of economic losses is
obtained by identifying homogeneous areas, value of assets,
defining reference costs, estimating percentages of damage
based on water depth in each area and flood scenario, etc.

Therefore, risk can be defined mathematically as

Risk = Load Probability× System Response× Vulnerability. (3)

The state of the art of this kind of analysis is a collection
of raster maps of flood extent for several annual exceedance
probabilities, including information on water depth and ve-
locity. This maps are combined with a structure inventory of
the flooded area that comprises structure type (residential,
commercial, industrial, etc.), structure location and value,
occupancy type and associated depth-percent damage func-
tions, among other categories, that help to define the Vulner-
ability (USACE, 2008; Escuder-Bueno et al., 2011). Param-
eters commonly used to measure the severity of a flood are
water depth, velocity, together with the dragging parameter,
v · y, and the sliding parameter,v2

· y. Due to the uncertain-
ties that exist at several levels of the process these parameters
are performance functions of basic random variables, being
random variables themselves.

As it has been mentioned, the hydrological input, defined
in terms of a flood hydrograph, affects the Load Probability
term of the equation of Risk. Flood hydrographs are influ-
enced by many random factors, such as rainfall pattern and
amount, watershed geomorphology, ground infiltration rate,
vegetation of the watershed and temperature, etc. Uncertainty
on flood hydrographs has been addressed by several authors
(Sarino and Serrano, 1990; Yue et al., 2002). The second term
of the Risk equation is the System Response. This response
is controlled by the quality of topography information, fric-
tion coefficient and type of model used: 1-D, 2-D or cou-
pled 1-D–2-D models. Uncertainty can be taken into account
by setting the model in a probabilistic framework, i.e. com-
bining the model and a probabilistic description of the in-
put parameters. The uncertainties are represented by random

variables, therefore the response is also a random variable
obtained by the propagation of the random input through the
model. Uncertainty in topography for numerical flood mod-
elling can be reduced thanks to remote sensing techniques
such as laser altimetry (Cobby et al., 2001; Gregory at al.,
2007; Sanders, 2007; Cook and Merwade, 2009; Shatnawu
and Goodall, 2010) which allow obtaining floodplain digi-
tal elevation models, DEMs, with a high degree of accuracy.
The specification of flow resistance is also subjected to un-
certainty, with different existing laws and methods (Wohl,
1998; Pappenberger et al., 2005) and a wide spectrum of val-
ues to be selected. Factors influencing the friction coefficient
include bed material, bed forms both at micro- and meso-
scale, and the presence of vegetation in the channel and in
the floodplains (Horrit, 2006). The spatial and temporal vari-
ability of these parameters adds difficulty in the assessment
of the friction coefficient (Mason et al., 2003). This is the
main source of uncertainty considered in this paper.

Regarding analysis models, 1-D models, despite their lim-
itations, are commonly used in engineering practice as they
are simple and allow fast calculations of flood parameters
(Yoshida and Dittrich, 2002; Helmio, 2005). These models
cannot accurately represent flood plain flows so 2-D models
where the velocity vector has two components have been de-
veloped and are now common tools in flood modelling (Hor-
rit and Bates, 2002; He et al., 2008; Wright et al., 2008;
Remo et al., 2009). 2-D models are solved by numerical
methods and their computation even for single set of param-
eters can be time demanding, depending on the extent of the
area and the calculation mesh density, i.e. number of points
where inundation parameters are going to be calculated per
unit area (Blad́e et al., 1994; USACE, 2002). To combine the
advantages and capabilities of both approaches some coupled
1-D–2-D models have been developed (Kun-Yeun Han et al.,
1998; Latorre at al., 2009; Kuiry et al., 2010; Finaud-Guyot
et al., 2011).

A common approach to solve problems where parameter
uncertainty is present is the Monte Carlo Method (Aronica et
al., 1998; Romanowicz and Beven, 1998). Variability of the
performance functions that describe the system response is
captured doing multiple realisations of the model using dif-
ferent sets of values of the basic random variables. These sets
of values are generated according to the probability distribu-
tions of the random variables and their possible correlations
(Rubinstein, 1981). The method allows considering random
variables with different probability distributions and non lin-
ear performance functions. In order to get a sound approx-
imation of the performance functions in terms of the form
of their probability distributions and accuracy in the estima-
tion of the parameters that define the distributions it is nec-
essary to perform a large number of simulations, assuring a
dense mapping of the probability functions of the basic ran-
dom variables. This is the major drawback of the method,
as when there is a large number of random variables and/or
the model is complex, computing time can be so high that
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the method becomes simply inapplicable for practical pur-
poses. To avoid this problem it is possible to use simplified
models that are much less demanding in terms of comput-
ing time. An example of this is the 1-D well known HEC-
RAS model, that can be used in a probabilistic framework
due to its relatively short calculation time (Pappenberger et
al., 2005). Another approach if 2-D models have to be used
is the search of an approximation of the 2-D model which
can be evaluated for fast explorations of its probabilistic be-
haviour by techniques such as spectral approximations (Liu
et al., 2010). This latter approach is still in the research field
and hardly used by engineers in everyday practice. Some 1-D
and 2-D models available to engineers include MIKE 11 and
MIKE 21 (DHI, 2011), BASEMENT (ETH Zurich, 2011),
ISIS 2-D (Halcrow, 2011), Infoworks 2-D (Innovize, 2011),
LISFLOOD (Van der Knijff et al., 2010), SOBEK (Deltares,
2011), GISPLANA (Estrela and Quintas, 1996) and IBER
(CEDEX, 2010).

The objective pursued in this paper is to demonstrate how
practical estimates of the variability of uncertain flood pa-
rameters can be obtained with a reasonable balance between
accuracy and effort. This paper addresses the use of reliabil-
ity techniques such as Rosenblueth’s Point-Estimate Method,
PEM, as a practical alternative to more precise Monte Carlo
approaches to get estimates of the mean and variance of flood
parameters such as water depth and velocity. These param-
eters define the flood severity, which is a concept used for
decision-making in the context of flood disaster risk assess-
ment. The method proposed is particularly useful when the
degree of complexity of the hydraulic models makes Monte
Carlo inapplicable in terms of computing time, but when still
an approximate measure of the variability of these parame-
ters can be of help for decision making.

In Sect. 2 the fundamentals of the point-estimate method
are shown. In Sect. 3 a case study is presented and three mod-
els of analysis are described. The first is a simple 1-D pris-
matic channel model, with uniform steady flow. This model
is used to explore the transfer of variability between input
random variables such as the friction coefficient and per-
formance functions like water depth and velocity. The sec-
ond model is a 1-D non prismatic channel model. This is
a steady flow model of the whole river reach implemented
in HEC-RAS. We have chosen this code as it is one of the
most frequently used codes for 1-D steady flow analysis. The
third model is a 2-D structured grid model. This model is a
Shallow Water Equations, SWE, 2-D unsteady flow model,
implemented in the commercial code GUAD-2-D (Inclam-
University of Zaragoza, 2008). This code was chosen be-
cause it has been used by the authors on previous research
and professional applications and it is also frequently used
by engineers in our environment (Olivera et al., 2008; Gra-
cia et al., 2010; Valĺes-Moŕan et al., 2012). In Sect. 4 point-
estimate method and Monte Carlo techniques are used in
combination with 1-D models to estimate the statistical prop-
erties of the performance functions and results are compared.

In Sect. 5 point-estimate method is used in combination with
the 2-D SWE model to get estimates of flood severity in
terms of mean and standard values of water depth, velocity
and dragging coefficient. Section 6 gives some conclusion
remarks.

It should be noted that the test models are not calibrated.
In this sense, the paper compares results between different
methods to deal with uncertainty using the same mathemati-
cal hydraulic models.

2 Estimation of uncertainty

2.1 Sources of uncertainty and existing methods

In engineering problems physical and probabilistic models
are used as mathematical idealizations of reality. Formulation
of reliability, risk and decision problems involves a set of in-
put random variables,X, parameterized sub-models describ-
ing their statistical distributions and physical sub-models that
describe the relationships between the random variables and
the derived quantities,Y . In this context, the sources of
uncertainty include (Der Kiureghian and Ditlevsen, 2007):
inherent uncertainty in the random variablesX; uncertain
model error resulting from the selection of the form of
the probabilistic sub-model; uncertain model error resulting
from the selection of the physical sub-models; statistical un-
certainty in the estimation of the parameters of the proba-
bilistic sub-model; statistical uncertainty in the estimation of
the parameters of the physical sub-model; uncertain errors
involved in measuring of observations; and uncertainty de-
rived from computational errors, numerical approximations
or truncations, when computation procedures employs iter-
ative calculations that involve convergence tolerances and
truncation errors.

To deal with at least part of the aforementioned sources of
uncertainty several methods can be used (Shresta and Solo-
matine, 2008), including analytical methods, approximation
methods, simulation and sampling methods, Bayesian meth-
ods such as the generalized likelihood uncertainty estima-
tion method or GLUE (Beven and Binley, 1992), statistical
methods based on the analysis of model errors (Kelly and
Krzysztofowicz, 1997) and methods based on fuzzy set the-
ory (Pappenberger et al., 2007).

The approximation methods provide only the moments of
the distribution of the derived parameters. Due to their sim-
plicity and low computational demand these methods are
suited for practical applications in hydrology and water re-
sources by engineers not familiar with more complex tech-
niques. The point-estimate method belongs to this group.

2.2 The point-estimate method

In this Section the fundamentals of Rosenblueth’s point-
estimate method for approximating low-order moments of
functions of random variables is presented (Rosenblueth,
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1981). The mathematical problem is that of a random vari-
able or variables,X, with probability distribution function
defined by the probability density function (PDF),fX(x),
and another variable,Y , which is a deterministic perfor-
mance function ofX, Y =g(X). The random variables are,
in this paper, the three bed friction coefficients defined by
Manning’s roughness,ni (i = 1, 2, 3), for the main channel
and both overbanks. The performance functionY is the wa-
ter depth and also the velocity, taking into account that these
two variables are fully correlated. It is assumed thatY has a
PDF defined byfY (y). The problem that point-estimate faces
is how to approximate the low-order moments offY (y) us-
ing only the low-order moments offX(x) and the function
g(X).

The point-estimate method determines the first two mo-
ments of the performance functiong(X) replacing the con-
tinuous random variablesX by discrete random variables
whose probability mass function, PMF,pX(x), has the same
moments of orderk as doesfX(x). The PMFpX(x) is trans-
formed usingg(X) to obtain another discrete function with a
PMF denotedpY (y). This latter PMF is used to calculate the
moments which are assumed to approximate the moments of
Y in the continuous case.

The first moment offX(x) about the origin is the mean,
µX

µX =

∫
x · fX(x) · dx. (4)

The higher-order central moments offX(x) of orderk are

µXk =

∫
(x − µX)k · fX(x) · dx. (5)

The second central moment,µX2, is the variance, and its
square root is the standard deviation,σX. The corresponding
moments of orderk the discrete PMFpX(x) are

µXk =

∑
(x − µX)k · pX(x). (6)

Equating the moments offX(x) andpX(x) yields∫
(x − µX)k · fX(x) · dx =

∑
(x − µX)k · pX(x). (7)

An approximation to integration is done using numerical
quadrature procedures. The selection of the optimal values
of the coordinates at which evaluate the integrand and the
corresponding weights is treated with Gaussian quadrature
procedures. So it can be seen from Eq. (7) that Rosenblueth’s
method is an application of Gaussian quadrature procedures
(Christian and Baecher, 1999). This discretization is made in
a few points for each random variable (two or three points),
where mass probability is concentrated in such a fashion that
the sum of the probabilities assigned to each point is 1 for
each random variable (Harr, 1987). The two-point method
concentrates the mass probability of the random variableXi

in two points,xi+ andxi−, each of them with a mass prob-
ability of Pi+ andPi−. Points are centred about the mean
value,µXi , at a distance ofdi+ anddi− times the standard
deviationσXi , respectively.

Pi+ + Pi− = 1 (8)

xi+ = µXi
+ di+ · σXi

(9)

xi− = µXi
− di− · σXi

. (10)

Coefficientsdi+ anddi− are determined using the skew co-
efficient,γi , of the random variableXi :

di+ =
γi

2
+

√
1 +

(γi

2

)2
(11)

di− = di+ − γi . (12)

Probabilities are assigned to each point according to

Pi+ =
di−

di+ + di−

(13)

Pi− = 1 − Pi+. (14)

A number of 2m values of discrete probabilities should be
obtained by combination of the point probabilities of each
of them random variables with the other random variable’s
probabilities. These probabilities areP(δ1,δ2,...,δm), whereδi

is the sign (±). Their values are calculated as

P(δ1,δ2,...,δm) =

m∏
i=1

Pi,δi +

m−1∑
i=1

(
m∑

j=i+1

δi δj aij

)
(15)

where the coefficientsaij are calculated as

aij =

ρij

2m√
n∏

i=1

(
1 +

( γi

2

)2) . (16)

Being ρij the correlation coefficient between random vari-
ablesXi andXj .

The performance functiong(X) has to be evaluated 2m

times, corresponding to the 2m possible combinations of dis-
crete probability pointsP(δ1 ,δ2, ..., δm), obtainingY (δ1,
δ2, ..., δm) =g∗(δ1, δ2, ..., δm). Once this is accomplished,
the expected value of thek-th power of the probability distri-
bution ofY is determined by:

E
[
Y k
]

≈

∑
P(δ1,δ2,...,δm) Y

k
(δ1,δ2,...,δm). (17)

So fork = 1 what we have is the first moment about the origin,
which is the mean,µY

E[Y ] ≈

∑
P(δ1,δ2,...,δm) Y(δ1,δ2,...,δm). (18)

And for k = 2 the second moment about the origin is obtained

E
[
Y 2
]

≈

∑
P(δ1,δ2,...,δm) Y

2
(δ1,δ2,...,δm). (19)
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The variance ofY can be calculated from the first two mo-
ments about the origin as:

σ 2
Y = µY2 = E

[
(Y − µY )2

]
= E

[
Y 2
]

− µ2
Y . (20)

So it is possible to determine the mean and the variance of the
random variableY , but the shape of the distribution remains
unknown.

The method allows to handle random variablesX with dif-
ferent symmetrical distributions. The method loses precision
as nonlinearity ofg(X) increases and if moments over the
second are to be obtained (Harr, 1987). It does not provide a
measure of the contribution of each random variable to the
overall variance, so it is not an adequate method to filter
the most relevant random variables. A disadvantage of the
method is that the performance function has to be evaluated
2m times, beingm the number of random variables. Ifm is
large, the method requires a considerable computational ef-
fort, above all ifg(X) evaluation is not straightforward, as it
is the case with 2-D SWE models.

The method performs reasonably well wheng(X) can be
approximated by a third-order or less polynomial and when
the coefficient of variation ofX, COV, defined as the ratio be-
tween standard deviation and mean value, is not large (Chris-
tian and Baecher, 1999).

3 Case study

In this Section the river reach and the different hydraulic
models used for the study are described.

3.1 Model of the Turia river reach

The modelled stream is a reach of the Turia river (Fig. 1a),
located several kilometers upstream of the city of Valencia, in
the eastern part of Spain. The domain modelled has a length
of 1 km and an average slope of 2.3 m km−1. The DEM of
the terrain has a mesh size of 1× 1 m.

The bed friction coefficient used is the Manning’sn. Three
zones are defined with different bed friction values: the main
channel,nch, the left overbank,nlob, and the right overbank,
nrob (see Fig. 1b). Then values over each of the three do-
mains are subjected to uncertainty and therefore are defined
as random variables in the model. The variables are assumed
to be uncorrelated in this paper, although it is recognized that
in fact some correlation may exist between the bed friction
values in the defined areas. Nevertheless the methodology
exposed in this paper can be applied without difficulty to cor-
related random variables. No spatial variability is considered
inside the three defined zones, which corresponds well with
the low degree of spatial heterogeneity observed in the reach
analyzed.

Different probability distributions have been used by dif-
ferent authors to statistically characterise the friction coef-
ficient, such as the normal (Cesare, 1991; Mays and Tung,

(a)

(b)

Fig. 1. Digital Elevation Model of the study river reach(a) and
zones considered for different bed friction values(b).

1992; Horrit, 2006), triangular (Yeh and Tung, 1993), log-
normal (USACE, 1986; Liu and Matthies, 2010) and uniform
distributions (Johnson, 1996; Pappenberger et al., 2005). In
this paper the uniform distribution is selected to examine
how point-estimate method performs when distributions have
such a high variability. To check the impact of the type of
probability distribution of the bed friction on water depth
and velocity estimates, also triangular symmetrical and nor-
mal distributions have been tested with the 1-D uniform flow
model. In the case of the triangular symmetrical distribution
the minimum and maximum values are the same as those of
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Table 1. Probability Distribution Functions (PDF) for bed friction
coefficient,n.

PDF Mean SD COV Min. Max.
µ σ =σ /µ value value

Uniform nlob 0.065 0.020 0.308 0.030 0.100
nch 0.045 0.014 0.311 0.020 0.070
nrob 0.085 0.032 0.376 0.030 0.140

Triangular nlob 0.065 0.014 0.215 0.030 0.100
nch 0.045 0.010 0.222 0.020 0.070
nrob 0.085 0.022 0.259 0.030 0.140

Normal nlob 0.065 0.020 0.308 0.025 0.105
nch 0.045 0.014 0.311 0.017 0.073
nrob 0.085 0.032 0.376 0.021 0.149

the uniform distribution. In the case of the normal distribu-
tion a different truncation has been adopted so the variable
is confined exactly between the range [µn − 2σn, µn + 2σn],
with µn andσn the mean and standard deviation ofn. The
probability distributions adopted forn are summarized in Ta-
ble 1. The study has been undertaken with three different im-
posed flows at the upstream end of 200, 300 and 500 m3 s−1.

3.2 Numerical flood models

In this Sub-section the three hydraulic models used in the
study are described.

3.2.1 Uniform flow model

The first model used is a uniform flow model that is applied
to a simplified 1-D prismatic channel geometry (Fig. 2a) of
the river station RS 768 of the 1-D HEC-RAS model that is
described in Sect. 3.2.2. The model assumes an infinite reach
length with constant geometry in terms of cross section and
slope. The slope of this ideal reach is 2.1 m km−1. This model
has been prepared to explore the transfer of variability from
bed friction coefficient to water depth and velocity functions
under ideal conditions, without non-linear perturbations of
flow due to changes in geometry. The implicit equation to be
solved is the well-known uniform flow formula

Q · S−0.5
=

∑
i

n−1
i Ai(y) [Ri(y)]0.67 (21)

whereQ is the flow (m3 s−1), S is the slope of the channel
(m m−1), ni is the random roughness coefficient in thei-th
zone in which the section is divided,Ai is the flow area of
the i-zone (m2), Ri is the hydraulic radius (m) of thei-th
zone andy is the water depth (m). In this case three zones
have been defined (i = 3): main channel and the left and right
overbanks. The simplification of the geometry allows using
algebraic expressions forAi(y) andRi(y). The model is im-
plemented in a spreadsheet.
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Fig. 2. 1-D model Geometry of the cross section at RS 768 of the
HEC RAS model, with the simplified cross section for the uniform
flow model showed with dashed line(a) and river reach ground pro-
file for 1-D HEC-RAS model(b).

3.2.2 1-D HEC-RAS model

A 1-D non prismatic channel, gradually varied steady flow
model of the reach has been prepared and implemented in
HEC-RAS. This model is defined by 12 cross sections lo-
cated along the reach and numbered according to their posi-
tion in terms of distance in meters to the downstream end (0;
219; 353; 454; 558; 591; 640; 694; 737; 768; 773 and 987).
Position of the bank stations that define the main channel and
the overbanks is consistent with the extent of the zones de-
fined in Fig. 2b. At the downstream boundary a normal depth
condition is imposed assuming a friction slope of 1.9 m km−1

according to the average river slope further downstream. No
upstream boundary condition is imposed in HEC-RAS as
subcritical flow is assumed. This assumption is checked after
the calculations. In this model the geometry varies between
cross sections. The real cross section at RS 768 compared to
the simplified section and the ground profile of the model can
be seen in Fig. 2.
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Table 2.Uniform flow model. Adaptation of PDFs to water depth with uniform distributions forni (1000 simulations).

Flow Mean SD COV Min. value Max. value PDF χ2

(m3 s−1) µ (m) σ (m) =σ /µ (m) (m)

200 3.23 0.3855 0.12 2.35 3.78 Beta Gen. 104.9
Triang. 153.3
Normal 359.2

300 3.67 0.3856 0.11 2.83 4.28 Beta Gen. 95.79
Triang. 174.6
Normal 287

500 4.27 0.4071 0.10 3.39 5.03 Beta Gen. 103.9
Triang. 179
Normal 184.1

3.2.3 2-D Shallow Water Equations model

A 2-D Shallow Water Equations (SWE) flow model has
been used to evaluate the system response in terms of wa-
ter depth and velocities in the domain under analysis. The
model solves the well-known 2-D finite volume shallow wa-
ter equations

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0 (22)

∂(hu)

∂t
+

∂
(
hu2

)
∂x

+
∂(huv)

∂y
= −gh

∂(h + z)

∂x
+

n2u
(
u2

+ v2
)0.5

h4/3
(23)

∂(hv)

∂t
+

∂(huv)

∂x
+

∂
(
hv2

)
∂y

= −gh
∂(h + z)

∂y
+

n2v
(
u2

+ v2
)0.5

h4/3
(24)

whereh is the flow depth,u andv the components of the
depth averaged flow velocity vector,z the bed elevation,g the
acceleration due to gravity andn the Manning’s coefficient of
roughness. This model is a 2-D structured grid implemented
in the commercial code GUAD 2-D (Inclam and Univer-
sity of Zaragoza, 2008; Murillo et al., 2008). The upstream
boundary condition is an imposed inflow. For the down-
stream boundary condition the GUAD 2-D allows five differ-
ent downstream conditions: (1) imposed hydrograph, (2) wa-
ter level as function of time, (3) stage discharge relation,
(4) critical flow and (5) flow over a spillway. Of these, the
downstream boundary condition chosen is a stage-discharge
relation, which has been obtained previously with the 1-D
model, thus minimizing the differences between models. The
continuous fieldsh, u and v are discretized over a struc-
tured mesh of elements that in this case are squares, but
that can have other shapes such as triangles. The model is
implemented over the DEM with a grid of 1140 rows and
1541 columns, rendering 1 756 740 cells of 1× 1 m. The gov-
erning equations are integrated over each element. The finite
volume method combines the main advantages of finite ele-
ment methods, such as its great geometrical flexibility, with
the main advantages of finite difference methods, such as its
flexibility in the definition of discrete flow variables.

The finite volume method has some disadvantages in the
representation of high order derivatives, so they should be
used when the viscosity terms can be ignored. The problem is
solved over time in GUAD 2-D using the Roe approximation
based on the local linearization of each Riemann problem
between adjacent cells. In the numerical model the source
terms are projected on the basis of the eigenvectors and they
are added to the discretization. The time step should be small
enough to assure stability. A Courant-Friedrich-Levy condi-
tion of 0.8 is assumed in the code by default (Murillo et al.,
2007).

4 Application of the method

In this Section the point-estimate method is used to calculate
flood parameters. Results obtained using PEM in combina-
tion with uniform flow and 1-D HEC-RAS steady flow mod-
els are compared with those obtained with the same models
but using the Monte Carlo approach.

4.1 Uniform flow model – Monte Carlo solutions

The first model used has been the uniform flow model de-
scribed in previous Section. The number of random variables
is three which correspond to Manning’sn values in main
channel and both overbanks. Three flow values are consid-
ered, 200, 300 and 500 m3 s−1. Three different probability
distributions have been used forni according to Table 1, uni-
form, triangular and normal. The problem has been solved
initially with Monte Carlo simulation with 1000 model runs.
From these simulations the mean and standard deviation of
water depth and velocity at the section have been estimated,
and an adaptation of several probability distributions has
been attempted, using the statistical tool @RISK (Palisade
Corporation, 2005).

The results for water depth are shown in Tables 2 to 4.
In a first step the probability distributions to be fitted have
been filtered so only those with lower and upper bounds have
been considered, as distributions ofni are bounded as well.
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Fig. 3. Uniform flow model. Case flow 500 m3 s−1. Adaptation of 4-parameter beta PDF to water depth (left panels) and velocity values
(right panels) obtained with Monte Carlo (1000 simulations), and for different distributions ofni : uniform (top panels), triangular (middle
panels) and normal (bottom panels).

The distributions that best fit the data according to theχ2

test are the 4-parameter beta distribution (Beta General) and
the 3-parameter triangular distribution. In a second step and
for comparison purposes the normal distribution has been se-
lected for fitting. The comparison of the 4-parameter beta dis-
tributions that best fit water depth for case flow 500 m3 s−1

whenni has different probability distributions is shown in
Fig. 3. Graphical comparison of probability density functions
suggest that better fitting is obtained whenni are triangu-
lar or normal distributed. The best approximation according
to χ2 test is obtained whenni have triangular distributions.
From Fig. 3 it can be seen that the probability distribution
of the water depth is not symmetrical, showing some nega-
tive skewness. This indicates that symmetrical distributions
such as the normal are not a good choice when attempting to
describe water depth in a probabilistic way.

A similar analysis has been performed for velocity of flow.
The procedure followed has been the same as for water depth.
The bounded distributions that best fit the data according to
theχ2 test are the 4-parameter beta distribution (Beta Gen-
eral) and the triangular distribution. Again, the normal dis-
tribution has been selected for comparison purposes. The re-
sults for velocity are shown in Tables 5 to 7. The high values
of theχ2 statistic indicates poor fitting in all cases. The com-
parison of the 4-parameter beta distributions that best fit ve-
locities for flow case 500 m3 s−1 whenni has different prob-
ability distributions is shown in Fig. 3. The graphic compari-
son confirms the bad fitting seen in theχ2 goodness of fit test.
It can be seen that the probability distribution of the veloc-
ity is strongly asymmetrical, showing positive skewness. The
values of theχ2 statistic for a significance levels ofα = 0.05
andα = 0.01 are shown in Table 8. It can be seen that none of
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Table 3.Uniform flow model. Adaptation of PDFs to water depth with triangular distributions forni (1000 simulations).

Flow Mean SD COV Min. value Max. value PDF χ2

(m3 s−1) µ (m) σ (m) =σ /µ (m) (m)

200 3.25 0.2592 0.08 2.35 3.78 Beta Gen. 120.2
Triang. 139.1
Normal 145.5

300 3.71 0.2709 0.07 2.83 4.28 Beta Gen. 66.39
Triang. 74.1
Normal 118.3

500 4.33 0.2791 0.06 3.39 5.03 Beta Gen. 80.77
Triang. 164.9
Normal 133.6

Table 4.Uniform flow model. Adaptation of PDFs to water depth with normal distributions forni (1000 simulations).

Flow Mean SD COV Min. value Max. value PDF χ2

(m3 s−1) µ (m) σ (m) =σ /µ (m) (m)

200 3.22 0.3296 0.10 2.17 3.83 Beta Gen. 87.79
Triang. 117.5
Normal 136.8

300 3.68 0.3292 0.09 2.63 4.34 Beta Gen. 71.26
Triang. 71.43
Normal 146.5

500 4.30 0.3398 0.08 3.21 5.11 Beta Gen. 108.8
Triang. 140.5
Normal 131.1

the distributions adapted to water depth and velocity pass the
test for the selected significance levels, thus showing poor
fitting, even for this simple hydraulic model.

Given that bed friction coefficientsni are defined as ran-
dom variables with bounded distributions, the water depthy

derived from the model is another random variable with a
bounded distribution, with range [yMIN , yMAX ]. These lim-
iting values can be calculated straightforwardly from the
model. A transformation of the water depth random variable,
y, into another random variable,w, is proposed according to

w = yMAX − y. (25)

Noww is a bounded random variable, with positive skewness
and confined in the range [0,yMAX − yMIN ]. The 1000 re-
alisations ofy obtained with Monte Carlo have been trans-
formed according to Eq. (25) and new adaptations have been
performed. Candidate probability distributions have been fil-
tered relaxing the upper bound restriction to let upper un-
bounded distributions such as the lognormal to be fitted. The
results obtained show an improvement in the fitting, partic-
ularly whenni friction values are normally distributed. In
Fig. 4 a comparison of lognormal distributions fitted to cal-
culated values is shown. The lognormal distributions fitted
do not pass theχ2 goodness of fit test, mainly due to the

inaccuracy in the adaptation of the upper tail. This was some-
how expected as the lognormal is an upper unbounded dis-
tribution while w is a bounded random variable. Still, it is
interesting to see from the graphs in Fig. 4 that the lognor-
mal distribution fits reasonably well for loww values, which
correspond to highy values. An advantage of the lognormal
distribution is that it is completely defined by only two pa-
rameters, its mean and standard deviation. The importance
of this feature will be addressed later.

The convergence of results of mean and standard devia-
tion values for water depth and velocity obtained with Monte
Carlo simulation is shown in Fig. 5 for the case ofni uni-
formly distributed and case flow 500 m3 s−1. In this case, the
estimated mean value of the water depth is 4.27 m and the
95 % confidence interval is [4.24; 4.30]. The estimated mean
value of the velocity is 1.81 m s−1 and the 95 % confidence
interval is [1.77; 1.85]. Taking into account the short ampli-
tude of these intervals, a good approximation to the unknown
asymptotic value is achieved. Similar results have been ob-
tained for the rest of the cases ofni distributions and flow
values, so they have not been included here.
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Table 5.Uniform flow model. Adaptation of PDFs to velocity with uniform distributions forni (1000 simulations).

Flow Mean SD COV Min. value Max. value PDF χ2

(m3 s−1) µ (m s−1) σ (m s−1) =σ /µ (m s−1) (m s−1)

200 1.72 0.5494 0.32 1.01 3.08 Beta Gen. 115.6
Triang. 106.8
Normal 486.9

300 1.78 0.6580 0.37 0.97 3.36 Beta Gen. 157.8
Triang. 170.9
Normal 585

500 1.81 0.6442 0.36 1.04 3.68 Beta Gen. 217.1
Triang. 190.2
Normal 721.8
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Fig. 4.Uniform flow model. Adaptation of lognormal PDF to transformed water depth variable (w =yMAX − y) for ni uniformly distributed
(left panels) and normally distributed (right panels), and for flow cases 200 m3 s−1 (top panels), 300 m3 s−1 (middle panels) and 500 m3 s−1

(bottom panels).
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Table 6.Uniform flow model. Adaptation of PDFs to velocity with triangular distributions forni (1000 simulations).

Flow Mean SD COV Min. value Max. value PDF χ2

(m3 s−1) µ (m s−1) σ (m s−1) =σ /µ (m−1) (m s−1)

200 1.67 0.3625 0.22 1.01 3.08 Beta Gen. 65.4
Triang. 183.7
Normal 160.9

300 1.67 0.2033 0.12 0.97 3.36 Beta Gen. 93.07
Triang. 146.5
Normal 270.6

500 1.64 0.3959 0.24 1.04 3.68 Beta Gen. 147.6
Triang. 536.5
Normal 351.2
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Fig. 5.Uniform flow model. Convergence of mean and standard deviation values for water depth and velocity. Case ofni uniformly distributed
and flow case 500 m3 s−1.

4.2 Uniform flow model – point-estimate method
approximation

To apply the point-estimate method the first step has been to
identify the 2m points where the performance function has to
be evaluated, beingm the number of random variables, which
are three in this case. The different probability distributions
of the bed friction coefficient considered are symmetrical and
roughness values in the three zones defined are assumed to be
uncorrelated, although correlation can be easily included as
shown in Sect. 2. Applying Eqs. (9) to (12) it can be seen
that the two points per variable are located one standard de-
viation above or below the mean. In this casem= 3 and we
had 23 = 8 points where the performance function had to be
evaluated (n1+, n2+, n3+), (n1+, n2+, n3−), (n1+, n2−, n3+),
(n1+, n2−, n3−), (n1−, n2+, n3+), (n1−, n2+, n3−), (n1−,
n2−, n3+), (n1−, n2−, n3−). According to Eqs. (13) and (14)
the probability or weight of each point isPi = 0.125. In Ta-
ble 9 the corresponding values ofni+ andni− for each zone
and distribution are summarized. The mean and variance of

the water depthy and velocityv have been calculated with
Eqs. (17) to (20), solving the model at the 8 points defined.

The comparison of the results obtained with the three
probability distributions of the bed friction coefficient con-
sidered is shown in Fig. 6. Each dot on the chart corresponds
to a different flow case. It can be observed that point-estimate
gives almost exact estimates of the mean water depth val-
ues and provides a good approximation of velocities. The
standard deviations show some scatter but still a reasonably
good estimation is obtained. In summary, point-estimate pro-
vides a good approach for mean and standard deviation val-
ues of water depth and velocity with a very limited calcula-
tion effort.

4.3 1-D HEC-RAS model

A similar procedure has been followed using the 1-
D HEC RAS model of the river reach. A difference from the
previous case is that in this case only uniform probability
distributions for bed friction coefficients have been consid-
ered. The hydraulic model comprises the whole river reach,
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Table 7.Uniform flow model. Adaptation of PDFs to water depth with normal distributions for ni (1000 simulations).

Flow Mean SD COV Min. value Max. value PDF χ2

(m3 s−1) µ (m) σ (m) =σ /µ (m) (m)

200 1.72 0.4730 0.27 0.96 3.47 Beta 76.83
Triang. 156.1
Normal 182

300 1.74 0.5670 0.33 0.93 3.83 Beta 120.5
Triang. 194.6
Normal 367.8

500 1.71 0.5412 0.32 1.00 4.29 Beta 221.4
Triang. 633
Normal 563.7
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Fig. 6. Uniform flow model. Mean and standard deviations of wa-
ter depth and velocity predicted by point-estimate method against
Monte Carlo. Results forni distributions: uniform (squares), nor-
mal (circles) and triangular (triangles). Each point on the chart cor-
responds to a flow case.

allowing for changes in section and slope, and so adding non
linear effects to the problem with respect to the uniform flow
model. Values of water depth and velocity are obtained at
the 12 river stations defined in the model. The Monte Carlo
analysis has been limited to 100 simulations, which are suf-
ficient to get a good estimation of the mean and standard de-
viation values of water depth and velocity, as can be seen
by the convergence curves shown in Fig. 7 for cross sec-
tion at river station RS 768 and flow case 500 m3 s−1. In this
case the estimated mean water depth isy = 4.37 m, and the
95 % confidence interval that corresponds to 100 simulations
is [4.33; 4.41]. The length of the interval is 0.08 m, which

is considered enough accuracy for the purpose of this paper.
As a reference, interval lengths of 0.20 and 0.02 m would be
expected for 10 and 1000 simulations, respectively. Similar
results have been obtained for the other cross sections and
flow cases so they are not shown here.

The point-estimate method needed only 8 calculations of
the hydraulic model for each flow case. The comparison of
results obtained with Monte Carlo and point-estimate method
is shown in Figs. 8 to 10 for the three flow cases considered.
Each dot on the chart corresponds to a different river cross
section. It can be seen that the mean depth is well approx-
imated by point-estimate for almost all cross sections. For
flow cases of 300 and 500 m3 s−1 the mean depth is slightly
underestimated by point-estimate method. For example, at
RS 768 the point-estimate method gives a mean water depth
y = 4.34 m. This fact shows the appearance of non linear ef-
fects and the influence of the whole reach in the flow char-
acteristics of different sections of the model. The standard
deviation of the water depth is reasonably well estimated,
showing some scatter for different flow rates and different
cross sections. For example, at RS 768 the standard devia-
tion of water depth estimated with Monte Carlo has a value of
0.1954 m while point-estimate gives a value of 0.1986 m. The
mean velocity is slightly overestimated by point-estimate
method though values fit reasonably well with those obtained
with Monte Carlo. The standard deviation for velocity shows
good performance. A comparison of mean and standard de-
viation of flow profiles for flow case 500 m3 s−1 is shown in
Fig. 11.

Flood uncertainty can be depicted by raster maps of mean
and standard deviation of water level values. In Fig. 12 flood
inundation maps of the analysed river reach with mean water
depths for the three flow cases are shown. In Fig. 13 the raster
map of standard deviation of water levels is shown, where
the 1-D mathematical structure of the model is highlighted
by the alignment of the standard deviation bands parallel to
the cross section definition in HEC-RAS model. The pattern
reproduced is that of Fig. 11.
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Table 8.Uniform flow model. Values ofχ2 statistic.

Significance PDF fitted Number of Number of bins Degrees ofχ2

level (α) parameters used in the test (b − 1− m)
(m) (b) freedom

0.05 Beta general 4 29 24 36.42
Triangular 3 29 25 37.65
Normal 2 29 26 38.89

0.01 Beta general 4 29 24 42.98
Triangular 3 29 25 44.31
Normal 2 29 26 45.64
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Fig. 7. 1-D HEC-RAS model. Convergence of mean and standard deviation values for water depth and velocity at RS 768. Case ofni

uniformly distributed with flow case 500 m3 s−1.

Table 9.Points estimate method. Values of bed friction used to eval-
uate the performance function.

PDF ofni Zone ofni xi− point: xi+ point:
µ − σ µ +σ

Uniform Left overbank 0.045 0.085
Channel 0.031 0.059
Right overbank 0.053 0.117

Triangular Left overbank 0.051 0.079
Channel 0.035 0.055
Right overbank 0.063 0.107

Normal Left overbank 0.045 0.085
Channel 0.031 0.059
Right overbank 0.053 0.117

5 Application to 2-D model

In this Section the application of the point-estimate method
in combination with a 2-D shallow water equations model is
presented. Only uniform probability distributions have been
considered for the roughness values of channel and over-
banks, in a similar fashion as with 1-D HEC-RAS model.

The 2-D hydraulic model had to been run 8 times, ac-
cording to the 8 combinations of the three random variables
point values adopted, for each of the 3 flow cases, so initially
24 runs were needed. To optimize the process a hydrograph
with three steps with constant flow rates of 200, 300 and
500 m3 s−1 has been prepared, reducing the number of model
runs from 24 to 8. The duration of each constant flow step
has been set to allow the model to reach a steady state flow
in the whole domain, resulting a duration of 30 min for each
constant discharge step. Results are then retrieved and the
calculations proceed to the next flow value. The time of cal-
culation with the 2-D model implemented in the commercial
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Fig. 8.1-D HEC-RAS model. Mean and standard deviations of wa-
ter depth and velocity predicted by point-estimate method against
Monte Carlo. Results forni uniformly distributed and flow case
200 m3 s−1. Each dot corresponds to a different RS of the model.
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Fig. 9.1-D HEC-RAS model. Mean and standard deviations of wa-
ter depth and velocity predicted by point-estimate method against
Monte Carlo. Results forni uniformly distributed and flow case
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code GUAD-2-D is considerably longer that with 1-D mod-
els. Each run of the HEC-RAS model takes less than 1 s while
each run of the GUAD-2-D model has had an average time
duration of 5 h, which makes flood uncertainty analysis with
Monte Carlo unfeasible from a practical point of view in en-
gineering. Still, an approximate uncertainty analysis can be
performed with the help of the point-estimate method.

The first step has been to perform the calculations with
the 2-D hydraulic model at the 8 points where the perfor-
mance functions have to be evaluated. In this case the perfor-
mance functions are the water depth and the total velocity at
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every 1× 1 m cell of the model. In this case the total veloc-
ity value has been selected though the analysis can be done
separately for its components (vX, vY ). Series of raster maps
with the results of water depths and velocities evaluated for
the 8 combinations of roughness coefficients are stored in

a GIS framework. The mathematical operations defined in
Eqs. (18) to (20) have been performed within the GIS using
the generated layers with GUAD 2-D. The first two moments
about the origin of the performance functions are calculated
at every point of the grid, and from those the expected value
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and the standard deviation are derived. The flood map with
expected values of water depth for the three flow cases is
shown in Fig. 14. The standard deviations of water depth
can be seen in Fig. 15, where the 2-D mathematical structure
of the model becomes clear when compared with equivalent
map obtained with HEC-RAS model. The map of mean and
standard deviation of velocities of flow is shown in Figs. 16
and 17, respectively.

Results from 2-D models can be used to assess the exten-
sion of flooded areas with different severity levels. The flood
severity levels are defined in terms of flood depth, velocity
and dragging coefficient, which is defined as the product of
the water depth times the velocity. An example of a chart
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Fig. 16.2-D SWE model. Flood maps with mean values of velocity
predicted by point-estimate method for flow cases of 200 m3 s−1
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for flood severity levels is shown in Fig. 18 (Gracia et al.,
2010). In this case 5 severity levels are defined as low (1),
moderate (2), high (3), very high (4) and extremely high (5),
according to Table 10. Flood severity levels are used to esti-
mate fatalities and/or economic losses. The severity analysis
has not been performed with the 1-D model because the ve-
locity distribution along each cross section is too rough to
allow meaningful comparisons with 2-D model in terms of
severity.

For each flow case, every point of the flooded area has
been evaluated in terms of water depth, velocity and dragging
coefficient for the 8 runs of the 2-D model. With the help of
GIS tools, the corresponding severity level has been derived
for each 1 m2 cell using the criteria defined in Fig. 18. The
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Fig. 18.Flood severity levels (adapted from Gracia et al., 2010).
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Fig. 19. 2-D SWE model. Expected values of the extension of
areas with different severity levels for flow cases 200, 300 and
500 m3 s−1.

total area for every flood severity level was computed, obtain-
ing 8 different values for each level. Following the procedure
of the point-estimate method the mean and standard devia-
tion of the extension of the flooded area for each severity
level has been calculated.

The estimated mean values for each severity level and for
the three flow cases are shown in Fig. 19. It can be seen
that as discharge increases the extension of flooded areas
with higher severity levels is generally incremented. In some
cases, as discharge increases, flow over large floodplains with
low water depths takes place. And additional increase in dis-
charge increases water depths, changing the severity level
of a large surface, while new flooded areas with low water
depths have lesser extent. This is the case of severity levels 1
and 2 in Fig. 19. The estimated mean values and standard de-
viations of the extension of the flooded areas for each sever-
ity level is shown in Fig. 20 (flow case 200 m3 s−1), Fig. 21
(flow case 300 m3 s−1) and Fig. 22 (flow case 500 m3 s−1).
It is interesting to see how the range of variation of exten-
sion of flooded areas varies for each severity level, bringing
a measure of the uncertainty that can be easily transferred to
consequence estimation in a risk analysis context. In the case
flow 200 m3 s−1 it can be seen that higher uncertainty de-
rived from roughness coefficient is present for severity levels
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Fig. 20.2-D SWE model. Expected values and standard deviations
of the extension of areas with different severity levels for flow case
200 m3 s−1.
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Fig. 21.2-D SWE model. Expected values and standard deviations
of the extension of areas with different severity levels for flow case
300 m3 s−1.

low (1) and high (3). For flow case 300 m3 s−1 low, uniform
uncertainty is spread over all severity levels. On the other
hand, for flow case 500 m3 s−1 a wider band of uncertainty is
linked to severity levels high (3) and very high (4).

A normalized measure of the amount of uncertainty of a
random parameter is the coefficient of variation, COV, which
is defined as the ratio between the standard deviation,σ , and
the mean,µ. Values of COV for each severity level for the
three flow cases analyzed are depicted in Fig. 23. In engi-
neering practice a small uncertainty would be represented by
a COV = 0.05 while considerable uncertainty would be in-
dicated by a COV = 0.25 (Hoek, 2007). It can be seen that
the majority of COV values obtained in the case study lie in
the range [0.05; 0.25], which means an intermediate situation
where significant yet not too high uncertainty is present due
to the variability assumed for the roughness coefficient.

The results in Figs. 20 to 22 show how the uncertainty in
bed friction coefficient is transferred to flooded areas with
different severity levels. This information may be useful in
the risk analysis context when used in combination with the
spatial distribution of vulnerability of the flooded area. This
means that at least some of the uncertainty from the hydraulic
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Table 10.Flood severity levels.

Severity level Range of water depth, Range of velocity, Range of dragging
y (m) v (m s−1) coefficient,y · v (m2 s−1)

Low (1) y ≤ 0.4 v ≤ 0.4 y · v ≤ 0.08
Moderate (2) 0.4< y ≤ 1 0.4< v ≤ 1 0.08< y · v ≤ 0.5
High (3) 1< y ≤ 2 1< v ≤ 3.5 0.5< y · v ≤ 1
Very high (4) 2< y ≤ 4 3.5< v ≤ 6 1< y · v ≤ 2
Extremely high (5) 4< y 6< v 2< y · v
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Fig. 22.2-D SWE model. Expected values and standard deviations
of the extension of areas with different severity levels for flow case
500 m3 s−1.

model can be added to the estimates of flood damage in the
context of risk analysis.

From the point of view of the engineer that has to build
a model, information regarding the location of zones with
higher variability can be useful to make decisions, such as
where to direct the efforts for efficient model improvement.

6 Conclusions

In the context of assessing the uncertainty in flood modelling
in a river reach, the results presented have shown the practical
applicability of the point-estimate method to perform uncer-
tainty flood analysis, considering the Manning’sn roughness
coefficient as the main source of uncertainty. Specific rela-
tionships between roughness coefficient and flow have not
been considered. Reasonable estimates of mean and standard
deviation values of flood parameters such as water depth and
velocity have been obtained with much less effort than with
Monte Carlo method using 1-D HEC RAS and a 2-D SWE
model implemented in the commercial code GUAD 2-D. It
has been shown that with a simple variable transformation
the water depth parameter can be roughly approximated by a
lognormal distribution. Better fitting is observed in the lower
tail of the transformed variable which corresponds to the up-
per tail of the water depth distribution. As the lognormal dis-
tribution is fully defined by its mean and variance, a proba-
bilistic characterization can be achieved using PEM.
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Fig. 23.2-D SWE model. Coefficient of variation (COV) of the ex-
tension of the area foir each severity level.

When the 1-D HEC RAS model is used, a reasonably
good approximation has been obtained with point-estimate
method, as the results match well with those obtained with
Monte Carlo method. Applicability to 2-D SWE model has
been shown. To evaluate the soundness of the approximation
additional research is needed, comparing the results of flood
estimates obtained with those from a 2-D SWE using Monte
Carlo method. This seems to be a promising field of research.

Flood maps with expected values of water depth and ve-
locity and their associated standard deviations have been ob-
tained implementing the point-estimate calculations within
a GIS framework, and flooded areas with different associ-
ated severity levels have been calculated in terms of the ex-
pected values and standard deviations of their extension. As
the evaluation of consequences of a flood in terms of fatal-
ities and/or economic losses is achieved using rates linked
to the extension of each severity level, in combination with
the spatial distribution of vulnerability in the flooded area,
uncertainty in the system response is transferred to the con-
sequence evaluation.

The main limitations of point-estimate method are the loss
of accuracy if the performance function cannot be approxi-
mated by third order polynomials and the fast growing of the
number of calculations needed if the number of random vari-
ablesm increases, rendering the method impracticable for
computing time-demanding problems, such as 2-D models.
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Though the method presented has some evident ad-
vantages such as its simplicity and limited effort needed
to perform uncertainty analysis of floods with non-
probabilistically-oriented 2-D commercial codes, the results
obtained should be carefully looked at. They should not be
deemed as exact values and it should be kept in mind that
this method is a practical alternative to more exact methods.
It is acknowledged that more research is needed in order to
set the limits of the applicability of the method and its accu-
racy in the 2-D models environment, above all when strong
non-linearities are present in the model.

The method presented is not always the best choice, but it
may be considered by engineers as a useful tool for screening
analysis before restoring to more powerful but more costly
methods in terms of time and money in the risk analysis con-
text. It is recognized, though, that whenever Monte Carlo ap-
plication is practically feasible, it is a preferred approach.
The underlying approach that has been presented is in line
with a quote by Box (Box and Draper, 1987), in the sense
that all models are wrong, and that the practical question is
how wrong they have to be to not be useful.
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1914 L. Altarejos-Garćıa et al.: Assessing the impact of uncertainty on flood risk estimates with reliability analysis

Horrit, M. S. and Bates, P. D.: Evaluation of 1D and 2D numerical
models for predicting river flood inundation, J. Hydrol., 268, 87–
99, 2002.

Inclam-University of Zaragoza, Departamento de mecánica de flui-
dos, Guad 2D Flow Software, Manual de Usuario, V1.1., 2011.

Innovyze: Infoworks RS software, available at:http://www.
innovyze.com/products.aspx(last access: 4 July 2012), 2011.

Johnson, P. A.: Uncertainty of Hydraulic Parameters, J. Hydraul.
Eng.-ASCE, 122, 112–114, 1996.

Kelly, K. S. and Krzysztofowicz, R.: A bivariate meta-Gaussian
density for use in hydrology, Stoch. Hydrol. Hydraul., 11, 17–
31, 1997.

Kuiry, S. N., Sen, D., and Bates, P. D.: Coupled 1D-Quasi-2D
flood inundation model with unstructured grids, J. Hydraul. Eng.-
ASCE, 136, 493–506, 2010.

Kun-Yeun, H., Jong-Tae, L., and Jae-Hong, P.: Flood inundation
analysis resulting from levee-break, J. Hydraul. Res., 36, 747–
759, 1998.

Latorre, B., Burguete, J., Murillo, J., Brufau, P., Garcı́a-Navarro,
P., Petaccia, G., Calvo, B., and Savi, F.: Flood wave simulation
with 1D-2D coupled models, Proc. CCWI, Taylor and Francis,
London, CCWI, 2009.

Liu, D. S. and Matthies, H. G.: Uncertainty quantification with spec-
tral approximations of a flood model, IOP Conf. Ser.: Mater. Sci.
Eng., 10, 012208,doi:10.1088/1757-899X/10/1/012208, 2010.

Mason, D. C., Cobby, D. M., Horrit, M. S., and Bates, P. D.: Flood
plain friction parameterisation in two-dimensional river flood
models using vegetation heights derived from airborne scanning
laser altimetry, Hydrol. Process., 17, 1711–1732, 2003.

Mays, L. W. and Tung, Y. K.: Hydrosystems engineering and man-
agement, McGraw-Hill, New York, 1992.
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