3,921 research outputs found

    A New Laboratory for Hands-on Teaching of Electrical Engineering

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper describes an innovative laboratory for students in Electrical Engineering courses, which is recently established at the Energy Department of Politecnico di Torino, Italy. The main peculiarities of the lab are the high ICT content of each test rig, the multidisciplinary experiences, and the hands-on teaching methodology, allowing the student to have access in overall safety to many complex electrical/electromechanical systems. Currently, eight courses of Bachelor and Master of Science degrees in electrical engineering carry out in-class exercises and hands-on experiments in the new lab, serving over 200 students in total per year. The innovative lab also allows for external collaborations with companies and institutions for specific (and in some cases permanent) training offers, like a one-day per month LabVIEW course for faculty and staff members of Politecnico di Torino

    Dairy Wastewaters for Algae Cultivation, Polyhydroxyalkanote Reactor Effluent Versus Anaerobic Digester Effluent

    Get PDF
    Nutrients in dairy wastewaters can be remediated through assimilation into algal biomass. Anaerobically digested manure creates an effluent (ADE) that is useful for algal cultivation while alternate processing of manure through a polyhydroxyalkanoate reactor generates a distinct effluent (PHAE), not previously characterized for algal cultivation. Each effluent was evaluated for growth rate, biomass production, and nutrient recovery using type algae species Chlorella vulgaris. Growth rates were elevated in 5, 10, and 20 % dilutions of PHAE (0.59, 0.53, 0.42 days−1) compared to equal concentrations of ADE (0.40, 0.36, 0.37 days−1). In addition, the growth phase lasted up to twice as long for PHAE, resulting in a fourfold higher stationary phase algal concentration (cells∙mL−1) compared to ADE. Growth in ADE was limited by specific inhibitory properties: high concentrations of dissolved organic matter, ammonia, and elevated bacterial load. Maximum nutrient removal rates for ADE and PHAE were 0.95 and 3.46 mg·L−1·day−1 for nitrogen and 0.67 and 0.04 mg·L−1·day−1 for phosphorus, respectively. Finally, biomass derived from PHAE was higher in lipids (11.3 % versus 7.2 %) and thus has a greater potential as a feedstock for biofuel compared to ADE

    Mathematical modeling of reaction mechanism of formation of photochemical smog by applying the semi-implicit method

    Get PDF
    To simulate the different mechanisms we considered a reactor of constant temperature and volume, where the only reactions that are carried out are those with reported kinetic constants [1]. For example, to simulate the formaldehyde kinetic you make a serial of seven chemical reactions where intervene nine chemical species [2].The change in concentration with respect to the time of one specie is mathematically represented by means of an ordinary differential equation. In the studied cases, the mechanism of reaction can be represented as a system of nonlinear ordinary differential equations. In the simulation of the mechanism of reaction, the medullar part is the solution of all the ordinary differential equation that describe the temporary evolution of the concentration of each the species. The differential equation that comes from the kinetic present what it is called rigidity, principally due to the simultaneous presence of radical with called rigidity, principally due to the simultaneous presence of radicals with a really short life time as the presence of hydroperoxide HO2‱ and species that remain almost constant as the oxygen. The main problem to carry out the precise integration of the differential equation system that represents the mechanism of reaction of the atmospheric chemistry, is the wide when variation of the kinetic constant as it appears in the reactions 2 and 7 which brings as a consequence the instability when applying an explicit numerical method because for any change in so different scales. When this happens, it is said that the differential equation system is rigid. In order to solve the problem that the rigidity of a differential equation system represented we should use special numerical method that ensures precision and stability in its integration. To achieve this whit a classical explicit method it is required a lot of computing time, besides the possible instability. When using the semi implicit method, we developed a computer package using language C++ to solve the system of nonlinear ordinary differential equation. Solving the matrix system with the method mentioned above, it is found the numerical value of the concentration of the five chemical species for every time step, given the initial concentration. The computer program used to solve the system of differential equation was developed in UNAM

    Phenolic Compounds And Anticancer Activity Of Commercial Sugarcane Cultivated In Brazil

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The cultivation of sugarcane hybrids (X Saccharum officinarum L.) is an important revenue source for the Brazilian economy. Herein it is reported the evaluation of the cytotoxic activity of mid-polarity sugarcane extracts against human cancer cell lines, as well as the isolation of steroids sitosterol, stigmasterol and campesterol, phenolic acids p-hydroxybenzoic, p-hydroxycinnamic, vanillic and ferulic acid, terpenoids alpha-tocopherol and beta-carotene and a novel substance in sugarcane, the flavonoid aglycone tricin (5,7,4-trihydroxy-3,5-dimethoxyflavone). The presence of large amounts of phenolic acids and the flavonoid tricin may explain the cytostatic activity observed for the mid-polarity crude extract and filtrates.88312011209Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao AraucariaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    The role of ionic liquids in the pharmaceutical field: an overview of relevant applications

    Get PDF
    Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.publishe

    The stellar mass assembly of galaxies from z=0 to z=4. Analysis of a sample selected in the rest-frame near-infrared with Spitzer

    Get PDF
    Using a sample of ~28,000 sources selected at 3.6-4.5 microns with Spitzer observations of the HDF-N, the CDF-S, and the Lockman Hole (surveyed area: ~664 arcmin^2), we study the evolution of the stellar mass content of the Universe at 0<z<4. We calculate stellar masses and photometric redshifts, based on ~2,000 templates built with stellar and dust emission models fitting the UV-to-MIR SEDs of galaxies with spectroscopic redshifts. We estimate stellar mass functions for different redshift intervals. We find that 50% of the local stellar mass density was assembled at 0<z<1 (average SFR:0.048 M_sun/yr/Mpc^3), and at least another 40% at 1<z<4 (average SFR: 0.074 M_sun/yr/Mpc^3). Our results confirm and quantify the ``downsizing'' scenario of galaxy formation. The most massive galaxies (M>10^12.0 M_sun) assembled the bulk of their stellar content rapidly (in 1-2 Gyr) beyond z~3 in very intense star formation events (producing high specific SFRs). Galaxies with 10^11.5<M/M_sun<10^12.0 assembled half of their stellar mass before z~1.5, and more than 90% of their mass was already in place at z~0.6. Galaxies with M<10^11.5 M_sun evolved more slowly (presenting smaller specific SFRs), assembling half of their stellar mass below z~1. About 40% of the local stellar mass density of 10^9.0<M/M_sun<10^11.0 galaxies was assembled below z~0.4, most probably through accretion of small satellites producing little star formation. The cosmic stellar mass density at z>2.5 is dominated by optically faint (R>25) red galaxies (Distant Red Galaxies or BzK sources) which account for ~30% of the global population of galaxies, but contribute at least 60% to the cosmic stellar mass density. Bluer galaxies (e.g., Lyman Break Galaxies) are more numerous but less massive, contributing less than 50% to the global stellar mass density at high redshift.Comment: Published in ApJ. 38 pages, 10 figures, 5 tables, 2 appendices. Some changes to match the final published versio

    Low temperature thermodynamic properties near the field-induced quantum critical point in DTN

    Full text link
    We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field Hc1≈2H_{c1} \approx 2\,T in DTN . A T3/2T^{3/2} behavior in the specific heat and magnetization is observed at very low temperatures at H=Hc1H=H_{c1} that is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at Hc1H_{c1} shows minor deviations from the expected T1/2T^{1/2} behavior. Our experimental study is complemented by analytical calculations and Quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gr\"{u}neisen parameters that are ideal quantities to identify QCPs. Both parameters diverge at Hc1H_{c1} with the expected T−1T^{-1} power law. By using the Ehrenfest relations at the second order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.Comment: 11 paged, 10 figures, submitted to PR

    Surface tension implementation for Gensmac 2D

    Get PDF
    In the present work we describe a method which allows the incorporation of surface tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the surface tension effects are incorporated into the free surface boundary conditions through the computation of the capillary pressure. The required curvature is estimated by fitting a least square circle to the free surface using the tracking particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local 4-point stencil which is mass conservative. An efficient implementation is obtained through a dual representation of the cell data, using both a matrix representation, for ease at identifying neighbouring cells, and also a tree data structure, which permits the representation of specific groups of cells with additional information pertaining to that group. The resulting code is shown to be robust, and to produce accurate results when compared with exact solutions of selected fluid dynamic problems involving surface tension

    Assessing the degradation of ochratoxin a using a bioassay : the case of contaminated winery wastewater

    Get PDF
    In vineyards the presence of certain fungi may lead to the production of the mycotoxin ochratoxin A (OTA) and subsequent contamination of grapes and wine. Furthermore, winery wastewaters contaminated with OTA may represent an environmental hazard. Therefore it is imperative to assess the fate of this mycotoxin in conventional wastewater treatment systems. The aim of the present work in this context is to assess the biological degradation of OTA. Experimental work was carried out in batch experiments with initial OTA to biomass concentration ratios (S0/X0) of 1.4 ÎŒg mg-1, 7.4 ÎŒg mg-1 and 11.9 ÎŒg mg-1. The assays were inoculated with activated sludge biomass unadapted to the substance under examination. The proposed bioassay demonstrates that OTA concentrations up to 100 ÎŒg L-1 can be degraded by microbial activity in activated sludge
    • 

    corecore