53 research outputs found

    CONSCIÊNCIA COMO ATRIBUTO CEREBRAL: UMA RÉPLICA A “O CONCEITO DE SENTIMENTO NO MONISMO DE TRIPLO ASPECTO”

    Get PDF
    A necessidade ou não da crença na sobrevivência do Eu após a morte inspira o dualismo ou monismo, respectivamente. A imortalidade do Eu não é passível de observação empírica e, portanto fica restrita ao campo das crenças. Nesse contexto, a imortalidade é plausível e suportada por uma coerência sintática de qualquer raciocínio lógico ou linguístico, mas não por uma coerência semântica

    Combining Different Tools for EEG Analysis to Study the Distributed Character of Language Processing

    Get PDF
    Recent studies on language processing indicate that language cognition is better understood if assumed to be supported by a distributed intelligent processing system enrolling neurons located all over the cortex, in contrast to reductionism that proposes to localize cognitive functions to specific cortical structures. Here, brain activity was recorded using electroencephalogram while volunteers were listening or reading small texts and had to select pictures that translate meaning of these texts. Several techniques for EEG analysis were used to show this distributed character of neuronal enrollment associated with the comprehension of oral and written descriptive texts. Low Resolution Tomography identified the many different sets (si) of neurons activated in several distinct cortical areas by text understanding. Linear correlation was used to calculate the information H(ei) provided by each electrode of the 10/20 system about the identified si. H(ei) Principal Component Analysis (PCA) was used to study the temporal and spatial activation of these sources si. This analysis evidenced 4 different patterns of H(ei) covariation that are generated by neurons located at different cortical locations. These results clearly show that the distributed character of language processing is clearly evidenced by combining available EEG technologies

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Neurobiologia e cognição

    No full text

    Processos temporais de codificação sensorial

    No full text
    Tese (livre docencia) - Universidade Estadual de Campinas, Instituto de BiologiaResumo: Não informado.Abstract: Not informed.Livre Docênci
    corecore