56 research outputs found

    Tilastolliset menetelmät : palvelus vai karhunpalvelus

    Get PDF

    Adaptive treatment allocation and selection in multi-arm clinical trials : a Bayesian perspective

    Get PDF
    Background: Adaptive designs offer added flexibility in the execution of clinical trials, including the possibilities of allocating more patients to the treatments that turned out more successful, and early stopping due to either declared success or futility. Commonly applied adaptive designs, such as group sequential methods, are based on the frequentist paradigm and on ideas from statistical significance testing. Interim checks during the trial will have the effect of inflating the Type 1 error rate, or, if this rate is controlled and kept fixed, lowering the power. Results: The purpose of the paper is to demonstrate the usefulness of the Bayesian approach in the design and in the actual running of randomized clinical trials during phase II and III. This approach is based on comparing the performance of the different treatment arms in terms of the respective joint posterior probabilities evaluated sequentially from the accruing outcome data, and then taking a control action if such posterior probabilities fall below a pre-specified critical threshold value. Two types of actions are considered: treatment allocation, putting on hold at least temporarily further accrual of patients to a treatment arm, and treatment selection, removing an arm from the trial permanently. The main development in the paper is in terms of binary outcomes, but extensions for handling time-to-event data, including data from vaccine trials, are also discussed. The performance of the proposed methodology is tested in extensive simulation experiments, with numerical results and graphical illustrations documented in a Supplement to the main text. As a companion to this paper, an implementation of the methods is provided in the form of a freely available R package 'barts'. Conclusion: The proposed methods for trial design provide an attractive alternative to their frequentist counterparts.Peer reviewe

    Bayesian non-parametric ordinal regression under a monotonicity constraint

    Full text link
    Compared to the nominal scale, the ordinal scale for a categorical outcome variable has the property of making a monotonicity assumption for the covariate effects meaningful. This assumption is encoded in the commonly used proportional odds model, but there it is combined with other parametric assumptions such as linearity and additivity. Herein, the considered models are non-parametric and the only condition imposed is that the effects of the covariates on the outcome categories are stochastically monotone according to the ordinal scale. We are not aware of the existence of other comparable multivariable models that would be suitable for inference purposes. We generalize our previously proposed Bayesian monotonic multivariable regression model to ordinal outcomes, and propose an estimation procedure based on reversible jump Markov chain Monte Carlo. The model is based on a marked point process construction, which allows it to approximate arbitrary monotonic regression function shapes, and has a built-in covariate selection property. We study the performance of the proposed approach through extensive simulation studies, and demonstrate its practical application in two real data examples

    The current duration design for estimating the time to pregnancy distribution: a nonparametric Bayesian perspective

    Get PDF
    This paper was inspired by the studies of Niels Keiding and co-authors on estimating the waiting time-to-pregnancy (TTP) distribution, and in particular on using the current duration design in that context. In this design, a cross-sectional sample of women is collected from those who are currently attempting to become pregnant, and then by recording from each the time she has been attempting. Our aim here is to study the identifiability and the estimation of the waiting time distribution on the basis of current duration data. The main difficulty in this stems from the fact that very short waiting times are only rarely selected into the sample of current durations, and this renders their estimation unstable. We introduce here a Bayesian method for this estimation problem, prove its asymptotic consistency, and compare the method to some variants of the non-parametric maximum likelihood estimators, which have been used previously in this context. The properties of the Bayesian estimation method are studied also empirically, using both simulated data and TTP data on current durations collected by Slama et al. (Hum Reprod 27(5):1489–1498, 2012).Peer reviewe

    Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

    Get PDF
    We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sen-sitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range of measured gene expression at the high end. Our method is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan

    Estimating genealogies from linked marker data: a Bayesian approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Answers to several fundamental questions in statistical genetics would ideally require knowledge of the ancestral pedigree and of the gene flow therein. A few examples of such questions are haplotype estimation, relatedness and relationship estimation, gene mapping by combining pedigree and linkage disequilibrium information, and estimation of population structure.</p> <p>Results</p> <p>We present a probabilistic method for genealogy reconstruction. Starting with a group of genotyped individuals from some population isolate, we explore the state space of their possible ancestral histories under our Bayesian model by using Markov chain Monte Carlo (MCMC) sampling techniques. The main contribution of our work is the development of sampling algorithms in the resulting vast state space with highly dependent variables. The main drawback is the computational complexity that limits the time horizon within which explicit reconstructions can be carried out in practice.</p> <p>Conclusion</p> <p>The estimates for IBD (identity-by-descent) and haplotype distributions are tested in several settings using simulated data. The results appear to be promising for a further development of the method.</p

    A BAYESIAN MALLOWS APPROACH TO NONTRANSITIVE PAIR COMPARISON DATA : HOW HUMAN ARE SOUNDS?

    Get PDF
    We are interested in learning how listeners perceive sounds as having human origins. An experiment was performed with a series of electronically synthesized sounds, and listeners were asked to compare them in pairs. We propose a Bayesian probabilistic method to learn individual preferences from nontransitive pairwise comparison data, as happens when one (or more) individual preferences in the data contradicts what is implied by the others. We build a Bayesian Mallows model in order to handle nontransitive data, with a latent layer of uncertainty which captures the generation of preference misreporting. We then develop a mixture extension of the Mallows model, able to learn individual preferences in a heterogeneous population. The results of our analysis of the musicology experiment are of interest to electroacoustic composers and sound designers, and to the audio industry in general, whose aim is to understand how computer generated sounds can be produced in order to sound more human.Peer reviewe

    Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

    Get PDF
    We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sen-sitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range of measured gene expression at the high end. Our method is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan

    Increasing incidence of Type 1 diabetes – role for genes?

    Get PDF
    BACKGROUND: The incidence of Type 1 diabetes (T1DM) is increasing fast in many populations. The reasons for this are not known, although an increase in the penetrance of the diabetes-associated alleles, through changes in the environment, might be the most plausible mechanism. After the introduction of insulin treatment in 1930s, an increase in the pool of genetically susceptible individuals has been suggested to contribute to the increase in the incidence of Type 1 diabetes. RESULTS: To explore this hypothesis, the authors formulate a simple population genetic model for the incidence change driven by non-Mendelian transmission of a single susceptibility factor, either allele(s) or haplotype(s). A Poisson mixture model is used to model the observed number of cases. Model parameters were estimated by maximizing the log-likelihood function. Based on the Finnish incidence data 1965–1996 the point estimate of the transmission probability was 0.998. Given our current knowledge of the penetrance of the most diabetic gene variants in the HLA region and their transmission probabilities, this value is exceedingly unrealistic. CONCLUSIONS: As a consequence, non-Mendelian transmission of diabetic allele(s)/haplotype(s) if present, could explain only a small part of the increase in incidence in Finland. Hence, the importance of other, probably environmental factors modifying the disease incidence is emphasized
    corecore