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Abstract This paper was inspired by the studies of Niels Keiding and co-authors on
estimating the waiting time-to-pregnancy (TTP) distribution, and in particular on us-
ing the current duration design in that context. In this design, a cross-sectional sample
of women is collected from those who are currently attempting to become pregnant,
and then by recording from each the time she has been attempting. Our aim here is
to study the identifiability and the estimation of the waiting time distribution on the
basis of current duration data. The main difficulty in this stems from the fact that
very short waiting times are only rarely selected into the sample of current durations,
and this renders their estimation unstable. We introduce here a Bayesian method for
this estimation problem, prove its asymptotic consistency, and compare the method
to some variants of the non-parametric maximum likelihood estimators (NPMLE),
which have been used previously in this context. The properties of the Bayesian esti-
mation method are studied also empirically, using both simulated data and TTP data
on current durations collected by Slama et al. (2012).

1 Introduction

The time it takes for a couple from initiating attempts to become pregnant until con-
ception leading to detected pregnancy, time-to-pregnancy, or TTP, is a key measure of
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Rémy Slama E-mail: remy.slama@ujf-grenoble.fr
Inserm, French Institute of Health and Medical Research, Team of Environmental Epidemiology applied
to Reproduction and Respiratory Health, Inserm-Univ. Grenoble Alpes

Niels Keiding E-mail: nike@sund.ku.dk
Department of Public Health, University of Copenhagen



2 Gasbarra et al.

natural fecundity (Baird et al., 1986). The two most obvious study designs for statisti-
cal inference on TTP are cohort (follow-up) study, where couples are followed-up in
time from when they start attempting to become pregnant, and retrospective study of
pregnant women where couples are retrospectively interviewed about the TTP of their
past attempt(s) at pregnancy (“pregnancy-based design“). A third design, which has
recently received attention (Weinberg and Gladen, 1986; Keiding et al., 2002, 2012;
Slama et al., 2012), is to collect information on current durations: collect from a cross-
sectional sample of women (couples) those that are currently attempting to become
pregnant, and then obtain from each of these the time they have been attempting.
The distribution of these times identifies the distribution of actually realized waiting
times, either to pregnancy or to unsuccessful end of attempt, in the population. Other
applications of the current duration approach include migration patterns, where Yam-
aguchi (2003) estimated length of stay in a house from current durations, and duration
of psychiatric disorders McLaughlin et al. (2010). The purpose of the present paper is
to explore the possibility of applying the Bayesian approach to the estimation prob-
lems connected to the current duration design, and to compare it to some variants of
the non-parametric maximum likelihood estimator (NPMLE) which has previously
been considered in this context by Keiding et al. (2012). These questions are studied
both empirically, using data on current durations of unprotected intercourse from 867
French women collected by Slama et al. (2012), and theoretically, considering the
asymptotic consistency properties of the estimators.

2 The current duration design: the main concepts

To set up the necessary notation, let

Y = time elapsed from the start of current attempt to sampling = current duration;
T = time (from the start of an attempt) to pregnancy;
U = time (from the start of an attempt) to giving up;
X = T ∧U = duration = time from the start to the end of an attempt.

Furthermore, let

H(x) = P(X ≤ x) and S(x) = P(X > x) = 1−H(x) (1)

be the CDF and the survival function of the distribution of X , respectively, and
µ = E(X). It is assumed throughout the paper that E(X) < ∞. By observing that
the current duration takes the value Y = y, one has actually come to know that X > y.
The data do not tell how the observed current duration in each case is going to end,
that is, whether in pregnancy or in giving up. Therefore, from the perspective of du-
rations X , current duration data are always right censored. On the other hand, the Y
variables are not censored in the original data.
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As in Keiding et al. (2002, 2012), statistical inference on the distribution of X ,
from current duration data {yi : i = 1, ...,n}, is here based on the key formula

f (y) =
S(y)
E(X)

, y > 0 , (2)

between the density function f for the current duration variables Y and the survival
function S for the duration variables X . Since clearly S(0) = 1, we have also the link
f (0) = 1/E(X).

This key formula is based on an adaptation of a modeling idea originally due to
Brillinger (1986), in which initiations of pregnancies are viewed as being generated
from the background population according to a Poisson process. If the Poisson pro-
cess is homogeneous with rate µ , durations of length in (x,x+ dx) form a thinned
Poisson process with rate µH(dx). The result then follows by interpreting the current
duration Y as a backward recurrence time from any fixed time point chosen indepen-
dently of the generation process. The same approach has been earlier used in other
similar contexts in Keiding (1991).

A slightly different way of arriving at this same result is to consider the problem
from the perspective of length biased sampling. Suppose that individuals/couples are
drawn from the background population to the sample independently and so that, for
a couple whose attempt to become pregnant has duration X , has a chance of being
included in the sample which is proportional to X , and that, moreover, the relative
position of the time point at which the sampling is made on that interval is uniformly
distributed:

Y |X ∼ Unif([0,X ]) .

Then it is easy to see (Cox and Miller, 1965; Zelen, 2004; Van Es et al., 2000) that
the link formula (2) holds: Let I = indicator of being included in the sample. Then

P(Y ∈ dy|I = 1) =
P(Y ∈ dy, I = 1)

P(I = 1)
,

where

P(I = 1) = E
(
P(I = 1|X)

)
=
∫

∞

0
cx H(dx) = cE(X) ,

for some suitable constant c , and

P(Y ∈ dy, I = 1) = E
(
P(Y ∈ dy, I = 1|X)

)
=
∫

∞

0
1(y≤ x)

dy
x

cx H(dx)

= c
(∫

∞

y
H(dx)

)
dy = c S(y) dy .

As both these derivations show, we may think that result (2) is an approximation of
reality, ignoring, for example, effects of seasonal variation on the initiation process,
and of possible earlier pregnancies by the same woman.
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On the other hand, in a situation in which there is no information that would
enable distinguishing between individual women, and assuming random sampling
from an infinite population, the observations (yi : i = 1, ...,n) are therefore infinitely
exchangeable from the point of view of a statistician examining these data. By the
De Finetti representation theorem, this means that (yi : i = 1, ...,n) are conditionally
independent given the survival function S which is viewed as a common parameter,
and in this sense the result (2) is exact. We close this section by some additional
remarks.

One may argue that in the definition X = T ∧U the variables T and U do not exist
separately: as soon as the value of one of these variables is realized, the other one
loses its original meaning. Instead, the duration X could be paired with an indicator
of either pregnancy or giving up, whichever occurs first. Either way, the hazard rate
associated with (the termination of) the durations X can always be represented as the
sum of two cause-specific hazard rates, one associated with pregnancy and the other
with giving up. Because of selection mechanisms acting in the study population, the
former is likely to be decreasing, and the latter increasing with respect to age.

The cause-specific hazard rates are not separately identifiable from current dura-
tion data, and it is not clear that their sum, corresponding to the duration variable X ,
would be monotone in either direction. When the follow-up time from the start of cur-
rent attempt is short, the hazard rate of giving up is likely to be small and therefore,
early on, the hazard rate corresponding to X should be a reasonable approximation of
that corresponding to T .

An additional problem concerning the identifiability of the distribution for the
time to pregnancy variable T is due to the fact that pregnancy is generally detected
only after some delay after conception has occurred, then often in connection of ab-
sence of subsequent menstrual bleeding. Here we do not elaborate on this issue fur-
ther, and simply define the variable T as the time of unprotected intercourse until
pregnancy is detected.

As argued, e.g., in Keiding et al. (2012), it is common to focus on the beginning
of the estimated TTP distribution and artificially censor it after about one or two
years, motivated partly by lack of confidence in the precision of large retrospectively
recalled current durations, partly by the less interesting nature and validity of the right
tail of the TTP distribution.

3 Indentifiability

As before, let H(t) = P(X ≤ t), E(X) =
∫

∞

0 (1−H(s))ds, and the current duration
density

f (t) =
1−H(t)

E(X)
.

For α ∈ (0,1), consider the mixture distribution

Hα,0(t) = Pα(X ≤ t) = α1(t = 0)+(1−α)H(t)
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with a point mass of size α at 0. We have Eα,0(X) = (1−α)E(X) and

f (t) =
1−H(t)

E(X)
=

1−Hα,0(t)
Eα,0(X)

∀ t > 0

We see that moving probability mass to the origin in the TTP distribution H(t) does
not affect the current duration distribution f (t), and H(0) is not identifiable. The
current duration setup is not limited to fecundity studies and may arise in different
contexts, for example, in the survey we could ask questions like: Are you looking for
a partner ? Or, for a job ? If so, how long have you been searching? Depending on the
context, the event {X = 0} is not always ruled out and possibly H(0) =P(X = 0)> 0.
In such cases only the conditional distribution

P(X ≤ t|X > 0) =
H(t)−H(0)

1−H(0)

is identifiable. We show that, even when the mass α is large, moving it to a point
sufficiently close to the origin will only have a small effect on the density f (t). For
α,δ ∈ (0,1), let

Hα,δ (t) = α1
(
δE(X)≤ t

)
+(1−α)H(t)

with TTP expectation

Eα,δ (X) =
∫

∞

0
(1−Hα,δ (s))ds = E(X)(1−α +αδ ) .

The corresponding current duration distribution has density

fα,δ (t) =

 f (t)
(

1+α(1−δ (1−H(t))/
{
(1−H(t))(1−α +αδ )

})
, t < δE(X)

f (t)
(
1−αδ/(1−α +αδ )

)
, t ≥ δE(X)

which satisfies

dTV
(

fα,δ , f
)
=

1
2

∫
∞

0

∣∣ fα,δ (t)− f (t)
∣∣dt =

α

2(1−α +αδ )

∫
δE(X)

0

1+δH(t)−δ

1−H(t)
dt +

αδ

2(1−α +αδ )

(
1−H(E(X)δ )

)
≤ δ

2(1−α)

{
α +

E(X)

(1−H(E(X)δ ))

}
Therefore, ∀ α ∈ (0,1), ε > 0, there is a δ ∈ (0,1) such that dTV

(
fα,δ , f

)
< ε , while

dTV (Hα,δ ,H) = α(1−∆H(E(X)δ )) .

For fixed α , as δ ↓ 0 we need large and larger current duration samples in order to
distinguish between the alternatives H and Hα,δ . Even if it is known that H(0) = 0,
the TTP-distribution is only weakly identifiable from current duration data. In order
to build a nonparametric estimator of the TTP-distribution it is necessary to regularize
the estimators close to the origin, ruling out the bad alternatives Hα,δ with small δ . A
simple way to do this, which seems natural in the context of TTP data, is to assume
a priori H(t)≡ 0 in an interval [0, t0] (Section 4). An alternative to this, adopted here
in Section 5, is to apply Bayesian nonparametrics.
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4 Semiparametric Maximum Likelihood Estimator

We modify in a simple way the Nonparametric Maximum Likelihood Estimator (NPMLE)
discussed in Keiding et al. (2012), by imposing on the non-increasing current dura-
tion density the constraint f (t)≡ f (0) for t ∈ [0, t0]. This is achieved by maximizing
the loglikelihood

n(t0) log f (0)+ ∑
yi>t0

log f (yi), with n(t0) =
n

∑
i=1

1(yi ≤ t0) ,

with respect to f (0) and ( f (yi) : yi > t0), under the constraints

f (0)≥ f (yi)≥ f (yi+1)> 0, yi > t0

and

f (0)t0 +∑
i

f (yi)(yi∨ t0− yi−1∨ t0) = 1

The corresponding Semiparametric Maximum Likelihood Estimator (SPMLE) of the
current duration density is determined explicitly as

f̂n(t; t0) =
{

f̂n(yk; t0) , yk−1 < y≤ yk, k = 1, . . . ,n
0 , t > yn

f̂n(yk; t0) =
1
n

min
0≤`≤k−1

max
k≤m≤n

{
m− `

ym∨ t0− y`∨ t0

}
, k = 1, . . . ,n,

where y0 = 0. The corresponding SPMLE of the TTP-distribution is then defined as

Ĥn(t; t0) = 1− f̂n(t; t0)

f̂n(0; t0)
= 1− f̂n(t; t0)

f̂n(t0; t0)
,

The NPMLE discussed in Keiding et al. (2012) corresponds to

Ȟn(t; t0) = 1−1∧ f̂n(t;0)

f̂n(t0;0)
,

and it is consistent if and only if t0 > 0.

5 Non-parametric Bayesian estimation of S

The non-parametric Bayesian approach to inference means that probability distribu-
tions are assigned to random (= uncertain) functions, where the probability represents
a quantification of the uncertainty involved. Here f and S are the natural candidates
for such functions. Since f (y) = S(y)/E(X) , where

E(X) =

∞∫
0

S(x)dx ,
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knowledge of S clearly leads to knowledge of f . But also conversely: since f (0) =
1/E(X), we get that S(y) = f (y)/ f (0). Note also that in the inferential problem of
estimating S (or H), the mean E(X), which is often viewed as a normalizing constant,
cannot be treated as a constant (in S) because it is the integral of S.

Any prior distribution on the realizations of S can be readily required to satisfy
the natural properties that, with prior probability 1, S(0) = 1, and S must be non-
increasing. These properties are then automatically inherited from the prior to the
posterior. Note first that, because of the key formula (2), the realizations of f must be
non-increasing as well. This also implies that

lim
y↓0

f (y)/ f (0) = lim
y↓0

S(y)/S(0)≤ 1 ,

with E(X) cancelling from the latter ratio. Thus the inconsistency problem at t = 0
of the non-parametric maximum likelihood estimator (NPMLE) (Grenander, 1956;
Denby and Vardi, 1986), which was pointed out by Woodroofe and Sun (1993)
and has since then been considered by several authors, is solved here automatically
for the realizations of the random function f . It is shown in Appendix 9 that our
suggested Bayesian estimator of the density f is consistent, and thus it shares this
asymptotic property with the penalized NPMLE introduced by Woodroofe and Sun
(1993). However, it also turns out that, in spite of the consistency, the problematic
behaviour of the original NPMLE near the origin continues to hamper the practical
application of both the penalized NPMLE and the nonparametric Bayesian estimator
in finite samples. As we will illustrate later by examples, the Bayesian estimators are
quite sensitive to variations in the hyperparameter values specifying the prior, and
a similar type of dependence holds on values of the parameter tuning the penalized
NPMLE.

The likelihood contributions from different current duration data points yi are here
considered independent, conditionally on their assumed distribution function H, and
therefore lead to the combined likelihood expression of the simple product form

L(S) =
n

∏
i=1

f (yi) =

( ∞∫
0

S(t)dt
)−n n

∏
i=1

S(yi) (3)

From (3) the logarithmic likelihood `(S) = logL(S) can be written in the form

`(S) =
n

∑
i=1

log(S(yi))−n log
(∫

∞

0
S(t)dt

)
=

n

∑
i=1

Ri log
(

S(τi)

S(τi−1)

)
−n log

(∫
∞

0
S(t)dt

)
,

where (τi : i = 1, . . . ,n) are the ordered individual observation times (yi : i = 1, . . . ,n),
and

Ri = R(τi), with R(s) =
n

∑
k=1

1(τk ≥ s) ,

is the size of the risk set at τi.
In a nutshell, our Bayesian approach to inference can be stated as follows:
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– Considering (realizations of) survival functions S, combine the consequent likeli-
hood expression (3) with a chosen prior distribution on the set of these functions.

– This gives, via Bayes formula, the posterior, that is, the conditional distribution
of S given the data.

– Finally apply some appropriate version of a Markov chain Monte Carlo (McMC)
algorithm to do the numerical computations.

6 Logistic Process Priors

A Bayesian nonparametric model for non-increasing densities on [0,∞) has been
studied by Hansen and Lauritzen (2002), by mapping a cumulative distribution func-
tion G to a non-increasing density

f (t) =
∫

∞

t
s−1G(ds), t ≥ 0 .

In this way a prior on the space of non-decreasing densities is obtained from a prior
on the space of cumulative distribution functions, like the Dirichlet process prior.

Since we are interested in S(t) = f (t)/ f (0) rather than in the non-increasing den-
sity f (t) by itself, we take an alternative approach, and modify the construction of
the logistic Gaussian density process to produce a monotone density.

6.1 Logistic Gaussian Process Prior

Let (Z(t) : t ∈ I) be a Gaussian random field indexed by I ∈ Rd , with law P0 under
which EP0

(
Z(t)

)
= µ(t) and EP0

(
Z(t)Z(s)

)
−µ(t)µ(s) = K(s, t). After changing the

probability measure to a non-Gaussian probability Pρ with density

dPρ

dP0
=C(ρ)−1

{∫
I

exp(−Zs)ds
}ρ

with C(ρ) = EP0

({∫
I

exp(−Zs)ds
}ρ)

,

parametrized by ρ ∈R, Lenk (1988, 1991) introduced the logistic Gaussian process

f (t) := exp(−Zt)

(∫
I

exp(−Zs)ds
)−1

, t ∈ I ,

which is a random density function on I, with prior parametrized by (µ,K,ρ). It
follows that, when Y1, . . . ,Yn, which are conditionally i.i.d. with density f (t), given
(Z(t) : t ∈ I), the posterior distribution of (Z(t), t ∈ I) given the data (Y1, . . . ,Yn), is
again a logistic Gaussian density process with posterior parameters (µ∗,K,ρ − n),
where

µ
∗(t) = µ(t)−

n

∑
i=1

K(t,Yi), t ∈ I ,

see also Ghosh and Ramamoorthi (2003), Lemma 5.7.2.
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6.2 Logistic Generalized Gamma Convolution Prior

In our case d = 1, I = [0,∞) and fZ(t) and the corresponding realizations of the
survival function S(t) should be monotone, which rules out Gaussian priors for Z(t).
Instead, we model Z(t) as a right-continuous non-decreasing process with Z(0) =
0. In general, the cumulative hazard process corresponding to S(t) = exp(−Z(t)) is
given by

Λ(t) = Zc(t)+ ∑
u≤t

(
1− exp(−∆Z(u))

)
, t ≥ 0, (4)

where ∆Z(t) := Z(t)−Z(t−) denote the jumps and

Zc(t) := Z(t)−∑
u≤t

∆Z(u) ,

denotes the continuous part of Z.
Note also that f (t)< ∞ ∀ t ∈ [0,∞), and we cannot obtain unbounded realizations

of the random density. When Z(t) is R-valued, the corresponding density f (t) and
survival probability S(t) will be strictly positive for all t > 0. In order to model dis-
tributions with support on a compact interval which is a priori unknown, we may add
to the model the cemetery state +∞ and an independent r-exponential killing time σ

such that Z(t) = +∞ and correspondingly f (t) = 0 for t ≥ σ .

Here we actually use a purely discontinuous jump process with Zc(t) ≡ 0, and
then impose the following special structure:

(Z(t) : t ≥ 0) is a generalized gamma convolution (GGC) process (James et al.,
2008), such that Z(0) = 0, the increments are independent and non-negative, driven
by the Lévy measure

ν(dz,ds) = 1(z > 0)exp
(
−b(s)z

)
z−1 dz a(ds) , (5)

which is also characterized by the Laplace transform

EP

(
exp
(
−
∫

∞

0
ψ(s)Z(ds)

))
= exp

(
−
∫

∞

0
log
(

1+
ψ(s)
b(s)

)
a(ds)

)
.

We call the corresponding random density f (s) a logistic generalized gamma convo-
lution process, and denote its distribution by LGGC(b(s),a(ds),ρ).

When ( f (t) : t ≥ 0) has the logistic subordinator prior LGGC(b(s),a(ds),ρ), the
posterior distribution, given the observations (Y1, . . . ,Yn), is again a LGGC process
with parameters (b(s)+R(s),a(ds),ρ−n).

In the implemention we use a logistic subordinator prior with ρ = 0 and driven by
a time-homogeneous gamma process, such that the increments (Z(t)−Z(s)),0≤ s≤ t
are gamma distributed with shape parameter (t− s)a, and a constant rate parameter
b.
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Note that, in any finite interval [0,T ], a time-homogeneous Gamma process has
the representation

Z(u) = Z(T )W (u), u ∈ [0,T ] ,

where (W (u) : u ∈ [0,T ]) is a Poisson-Dirichlet process on [0,T ] with driving mea-
sure a du, which is independent from the final value Z(T ) (Phadia, 2013). It fol-
lows that the distribution of W does not depend on the rate parameter b of the time-
homogeneous Gamma process Z. We restrict the analysis to a finite time interval
[0,T ], assuming Z(u) = +∞ and S(u) = 0 for u > T . We use the decomposition

Z(u)−Z(τi−1) =Wi(u)∆Zi u ∈ (τi−1,τi] ,

where ∆Zi = Z(τi)−Z(τi−1), and Wi(u) is an homogeneous Poisson-Dirichelet pro-
cess on the interval (τi−1,τi], with driving measure a du. Realizations from the Poisson-
Dirichlet prior of W (u) are generated by using the Ferguson and Sethuraman stick-
breaking algorithm (Sethuraman, 1994; Phadia, 2013).

The idea is to parametrize the model by the Gamma-distributed increments ∆Zi
and a sequence of independent Poisson-Dirichlet processes Wi(u) on each interval
(τi−1,τi]. With this construction and notation, we can rewrite the log-likelihood cor-
responding to the the current duration data points (yi : i = 1, . . . ,n) as

−
n

∑
i=1

Ri(Z(τi)−Z(τi−1))−n log
(∫

∞

0
exp
(
−Z(u)

)
du
)

=−
n

∑
i=1

Ri∆Zi−n log
( n

∑
i=1

exp
(
−∑

j<i
∆Z j

)∫ τi

τi−1

exp
(
−Wi(u)∆Zi

)
du
)

.

Note that Wi(u) corresponds to a probability distribution which spreads the mass ∆Zi
on the interval [τi−1,τi). The parameter a in the Gamma process prior tunes the devi-
ation of the random probability distribution Z(dt)/Z(T ) from its mean, approaching
the uniform distribution as a ↑ ∞.

For comparison, the NPMLE is found by first setting Wi(u)≡ 1, which assigns to
each time point τi−1 the point mass ∆Zi, and then by maximizing the log-likelihood

−
n

∑
i=1

Ri∆Zi−n log
( n

∑
i=1

exp(−∑
j≤i

∆Z j)(τi− τi−1)

)
,

under the constraint ∆Zi ≥ 0, i = 1, . . . ,n.
Values of (∆Zi, i = 1, . . . ,n) and of the Poisson-Dirichlet processes Wi(u) can

now be sampled from the posterior distribution by using a Metropolis-Hastings al-
gorithm (Robert and Casella, 2004). This is done by alternating between updating
(Wi(u) : τi−1 < u≤ τi) and ∆Zi, using the prior as the proposal distribution and keep-
ing the other variables fixed, and by then accepting or rejecting each proposal accord-
ing to the Metropolis-Hastings rule. This McMC updating scheme works also with
more general LGGC priors with piecewise constant rate parameter b(s) and without
restrictions on the driving measure a(ds).
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6.3 Pseudo-posterior

Walker and Hjort (2001) proposed to combine a nonparametric prior Π(d f ) on a
space of density functions with an α-power of the likelihood, into the pseudo poste-
rior

Π̂n(d f ) ∝

n

∏
i=1

f (Yi)
α

Π(d f ) ,

and showed that when α ∈ (0,1) and the true density f 0 belongs to the Kullback-
Leibler support of the prior, the pseudo-posterior is always strongly consistent (we
discuss posterior consistency in the Appendix). When f 0 is non-increasing this fol-
lows also for α = 1, and in this respect Walker and Hjort pseudo-posterior is not
needed. We just remark that by starting with a LGGC(b(s),a(ds),ρ) process prior
for f , the resulting pseudo-posterior is the LGGC(b(s)+αR(s),a(ds),ρ−αn) pro-
cess, and the proposed McMC algorithm applies directly.

6.4 Choice of parameters

As noted above, the shape parameter a tunes the departure from uniformity of the
random probability distributions Wi(du) on the respective intervals [τi−1,τi). Here we
simply fix its value, but it would be also possible to assign a prior to it and compute
its posterior distribution by adding a Metropolis update to the McMC. We assign a
scale invariant improper prior to the rate parameter b as

π(b)∼ b−1 . (6)

Since

p(b|Z,Y ) ∝ π(b)p(ZT |b) ∝ baT−1 exp(−bZT ) ,

it turns out that, given ZT , b is conditionally independent from the data (yi : i =
1, . . . ,n), and Gamma distributed with shape parameter aT and rate parameter ZT .
In the McMC we update cyclically b by sampling from this full conditional Gamma
distribution.

7 Bayesian Data Augmentation

An alternative approach consists in augmenting the model with the latent selected
waiting times X1, . . . ,Xn. Note that conditionally on {Ii = 1}, the selected waiting
time Xi has distribution

G(x) := P(Xn ≤ x|In = 1) =
∫ x

0
y H(dy)

/∫
∞

0
y H(dy) . (7)

We model the selected TTP distribution as

G(t) = 1− exp
(
−Z(t)

)
(8)



12 Gasbarra et al.

where Zt is a GGC-process with Lévy measure (5), which determines the waiting
time distribution

H(x) = P(Xn ≤ x) =
∫ x

0
y−1 G(dy)

/∫
∞

0
y−1 G(dy) . (9)

Under such a prior specification, given the data (Y1, . . . ,Yn), we sample the process
H(t) and the latent variables X1, . . . ,Xn by using a two-step Gibbs-Metropolis algo-
rithm:

1. Given the current durations Y1, . . . ,Yn, the indicators I1, . . . , In of being included
in the study, and the random waiting time distribution H(t), the latent selected
waiting times are sampled independently from the conditional distributions

P(Xi ∈ dx|Yi, Ii = 1,H) ∝ P(Xi ∈ dx|H)p(Yi|Xi)p(Ii = 1|Xi) = H(dx)
1(x≥ Yi)

Xi
c Xi

(10)

=⇒ P(Xi ∈ dx|Yi, Ii = 1,H) =
1(x≥ Yi)

1−H(Yi−)
H(dx) . (11)

2. We update the process Z(t), which in turn determines the waiting time distribu-
tions H(t) and G(t) by (8) and (9), as follows:
Conditionally on the augmented data (Yi,Xi, Ii = 1, i = 1 . . . ,n) the GGC process
Z(t) is again a subordinator with decomposition

Z(t) = Ẑ(t)+ Ž(t),

into independent components, specified as follows:
– Ẑ(t) is a GGC-process with Lévy measure

ν
∗(dz,dt) = exp

(
−z(b(t)+ r(t))

)
z−1 a dzdt ,

which has piecewise constant rate function when b(s) is piecewise constant,
where

r(t) = #
{

j : X j > t
}

denotes the size of the set of individuals at risk of becoming pregnant at time
t.

– Ž(t) has jumps ∆ Ži at the fixed discontinuities Xi, with respective densities

C−1
i exp

(
−(b(Xi)+ r(Xi))z

)
z−1 (1− exp(−z))∆n(Xi)dz (12)

where

∆n(t) := #
{

j : X j = t
}
, and Ci are normalizing constants.

In the Gibbs-Metropolis implementation, we update Ži by sampling its jumps
from the proposal distribution

∆ Ž∗i ∼ gamma
(
∆n(Xi),b(Xi)+ r(Xi)

)
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accepting the transition ∆ Ži −→ ∆ Ž∗i with probability

min
{

1∧
((

1− exp(∆ Ž∗i )
)
∆ Ži
)(

1− exp(∆ Ži)
)
∆ Ž∗i

)∆n(Xi)
}
.

We could also assign the prior distribution of G(t) by modeling the corresponding
cumulative hazard rate process (4) as a beta process (Hjort , 1990) or a neutral to the
right process (Phadia, 2013).

Remark 1 Note that in the data augmentation scheme presented above, it was conve-
nient to assign the nonparametric LGGC prior to the distribution G of length-selected
waiting times, which determines by (9) also the prior of the genuine waiting time
distribution H. In Section 6.2 we did not use data augmentation, and we assigned the
nonparametric LGGC prior directly to the waiting time distribution H.

8 Some illustrations of the method

This section contains some numerical illustrations on applying the nonparametric
Bayesian estimation method for estimating the waiting time distribution H(t), or
the corresponding survival distribution S(t) = 1−H(t), from current duration data.
The purpose of the first illustration, based on simulated data, was to check how
well the method calibrates with respect to the data generating distribution. For this
purpose, we simulated independent samples of size n = 10,000 of waiting times
Xi from the uniform distribution on [0,1], with S(t) = 1− t, 0 ≤ t ≤ 1, together
with the corresponding current duration times Y1, . . . ,Yn, with conditional density
f (y|x) = x−11(y ≤ x) and marginal f (t) = 2(1− t), t ∈ [0,1], and tried then the
method in estimating S(t), based on the current duration data Yi, 0≤ i≤ n.

Note that, although considering the uniform distribution as the basis of a simula-
tion experiment may seem unduly restrictive, it has an obvious meaning, in terms of
quantiles, for any continuous lifetime distribution H(t).

For the Bayesian non-parametric prior, we assumed a gamma process prior for
Z(t) =− log(1−G(t)), 0≤ t ≤ T = 2, with driving measure a(dt) = 1.5×dt and a
non informative prior π(b)∝ b−1 for the rate parameter. The nonparametric posteriors
were computed by running the data augmented McMC algorithm of Section 7.

In Fig. 1 we compare the true current duration density f (t) with the NPMLE and
the nonparametric posterior in terms of the pointwise posterior mean, posterior me-
dian, and the 90 percent credible interval, while in Fig. 2 we compare the correspond-
ing estimators for the waiting time distribution. The NPMLE estimator of the current
duration density f (t) is known to be inconsistent at t = 0, and f (0) is overestimated.
The corresponding survival probability S(t) is underestimated by the NPMLE. The
posterior credible intervals are quite wide closer to the origin, but become narrower
as t increases, and contain the true generating S(t) for all t.

The second illustration used current duration data from the French telephone sur-
vey on TTP, with sample size n = 867, discussed in detail in (Slama et al., 2012). In
the specification of the Gamma process prior of Z(t) = − log(1−G(t)) we used the
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driving measure a(dt) = a×dt, and assumed a non informative prior π(b) ∝ b−1 for
the rate parameter. The nonparametric posteriors were computed either by running
10,000 cycles of the data-augmented McMC algorithm of section 7, or by running
50,000 cycles of the unaugmented McMC algorithm of section 6.2, using a time
horizon of T = 300 months. In the illustrations shown in Figures 3-10, for clarity, we
show only the first 36 months. Figures 3 and 4 display the current duration density
estimators under the LGGC prior, based on the augmentation method and hyperpa-
rameter value a = 0.1, without cut-off (Fig. 3), and using a cut-off at two weeks (Fig.
4), which is understood as the minimal delay in the detection of pregnancy after con-
ception. The effect of cut-off is clearly visible in the difference between the NPMLE
and SPMLE close to the origin. The Bayesian posterior estimates seem quite insen-
sitive to the use of the cut-off. Figures 5 and 6, again showing results from current
duration density estimation, illustrate the effect of changing the value of the hyper-
parameter a from a = 0.1 to a = 1, while keeping the other settings as in Fig. 3. As
expected, a larger value of a results in somewhat smoother curves, and also narrower
pointwise credible intervals. Figures 7, 8, 9 and 10 correspond to each of Figures
3, 4, 5 and 6, but show the results in terms of the corresponding survival function
estimates. Comparison of the Bayesian posterior estimates in the different settings
follows closely the patterns that were already visible in the corresponding density
estimates, but the NPMLE and SPMLE survival curves are still remarkably sensitive
to the use of a cut-off at two weeks.

We also conducted a Monte Carlo study with M = 4050 replications of the French
telephone survey data. As in Keiding et al. (2012), we assumed a generalized Gamma
TTP distribution, with density

fλ ,σ ,µ(x) =
|λ |λ−2λ−2

|σ |Γ (λ−2)
x(σ

−1λ−1−1) exp
(
− µ

λσ
−λ

−2e−µλ/σ xλ/σ

)
1(x≥ 0) (13)

with parameters λ ,σ ,µ ∈ R. This is the density of the power X(ω) = ξ (ω)σ/λ ,
where ξ (ω) is Gamma distributed with shape λ−2 and rate λ−2 exp(−µλ/σ). Note
that

– 0 < fλ ,σ ,µ(0)<+∞ if and only if σλ = 1.
– fλ ,σ ,µ(0) = +∞ for σλ > 1,
– fλ ,σ ,µ(0) = 0 for σλ < 1.

The distribution of the selected TTP is the conditional density

gλ ,µ,σ (x) = fλ ,µ,σ (x|I = 1) =
x fλ ,µ,σ (x)∫

∞

0 r fλ ,µ,σ (r)dr
= f

λ̃ ,σ̃ ,µ̃
(x) (14)

which is the generalized gamma density with parameters (λ̃ , σ̃ , µ̃)

λ̃ =
λ√

1+σλ
, σ̃ =

σ√
1+σλ

, µ̃ = µ +
σ

λ
log(1+σλ ) . (15)



Current duration design and TTP distribution: a nonparametric Bayesian perspective 15

The expected TTP in (14) is given by

Eλ ,µ,σ (X) =
x fλ ,µ,σ (x)
f
λ̃ ,µ̃,σ̃

(x)
= exp

(
µ +

(
1

λ 2 +
σ

λ

)
log(1+σλ )

)
λ̃ (2λ̃−2)Γ (λ̃−2)

λ (2λ−2)Γ (λ−2)
, ∀x > 0.

In the simulation we used parameter values λ = 0.7,µ = 1.4865,σ = 1.2857, corre-
sponding to 6.041 months mean TTP. When X is a selected TTP time with density
(14) independent from U ∼ Uniform([0,1]), the product Y =UX follows the current
duration distribution with density

hλ ,σ ,µ(y) =
Pλ ,µ,σ (X > y)

Eλ ,µ,σ (X)
=

∫
∞

y fλ ,µ,σ (r)dr∫
∞

0 x fλ ,µ,σ (x)dx
(16)

=
1−Γ (λ−2;λ−2yλ/σ e−µλ/σ

)
/Γ (λ−2)

Eλ ,σ ,µ(X)
, y≥ 0 ,

where

Γ (α; t) =
∫ t

0
sα−1e−sds

is the incomplete Gamma function (see also Yamaguchi (2003)).
Each replicated dataset consists of n = 867 i.i.d. current durations sampled from

the density (16). For each dataset we computed the nonparametetric Bayesian esti-
mators as in section 7, assuming for the selected TTP distribution a nonparametric
LGGC prior with hyperparameter a = 0.05. For each simulated dataset the posterior
was computed in 10000 McMC cycles. Fig.11 shows the pointwise empirical median
curve and the corresponding 90% confidence band of the pointwise Bayesian non-
parametric estimate (median) of the current duration density, determined from the
4050 replicated samples by applying the nonparametric Bayesian estimation method.
Also the empirical medians of the corresponding pointwise 90% posterior credible in-
terval bounds are displayed. Note that the true current duration density is within the
empirical confidence band. The corresponding statistics for the Bayesian nonpara-
metric TTP-survival probabilities are displayed in Fig. 12. Typically the nonparamet-
ric TTP posterior is parsimonious, assigning a negligible mass to the neighbourhood
of the origin where the TTP distribution identifies poorly.

9 Discussion

In the current duration design, the probability that an individual belonging to a large
population will be included in the sample is proportional to the length of the consid-
ered waiting time or lifetime. As a consequence, typical data sets arising from such
a design contain only few short durations, which renders the estimation of the distri-
bution near the origin unstable. The problem is particularly evident in nonparametric
maximum likelihood estimation, where even asymptotic consistency of the estimator
at the origin does not hold without further constraints. As we have demonstrated in
Section 8 above, nonparametric Bayesian modelling and inference gives an alterna-
tive approach to the analysis of current duration data. The empirical results provided
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there are complemented by Corollary 1, which shows that our Bayesian method is
weakly consistent, with the proof given in the Appendix.

As always in the case of Bayesian methods, an issue of some concern is the
dependence of the posterior inference on the specification of the hyperparameters
controlling the prior distribution. While such influence in nonparametric estimation
rarely exceeds the strong control imposed by the choice of a distribution family in
parametric inference, it is true that often there are no clear rules as to how the val-
ues of such hyperparameters should be chosen. Here, larger values of the driving
measure parameter lead to a greater degree of smoothness in the resulting estimates,
somewhat reminiscent to choosing a wider bandwidth when applying nonparametric
kernel smoothing. Apart from their behaviour very close to the origin, the estimates
do not seem to depend much on whether a positive threshold parameter t0 value has
been used, and therefore our illustrations are mainly based on analyses where there
was no such threshold.

A natural way to bypass the difficulty of specifying hyperparameters for the prior
would be to combine, within the same statistical analysis, likelihood expressions from
studies based on different designs and with consequently different strengths. For ex-
ample, considering that the information content of TTP-data is weakest on short wait-
ing times, it would make sense to complement such data with data from a retrospec-
tive survey study, conducted simultaneously on the same population. Couples who
actually are pregnant or got children in a given time window are then asked how long
they tried before getting pregnant, and couples who had tried to get pregnant without
success and had given up, are asked how long they did try before giving up.

There are several alternatives to formulating a ’stochastic process’ model for S(t)
to the one that was used here, employing a Markov jump process to model a piecewise
constant (Arjas and Gasbarra, 1994) or piecewise linear functions for the hazard rate

λ (t) =−d log(S(t))
dt

.

Various extensions of the present basic version of the model would also be possible,
for example, by postulating a Cox type proportionality property for the hazard rates
corresponding to different covariates.
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10 Appendix: Posterior consistency under logistic subordinator prior

Here we discuss the posterior consistency properties of the Bayesian estimator of the
density f (t) introduced in Section 6.2. This is done within the framework presented
in the monographs by Ghosh and Ramamoorthi (2003) and Hjort et al. (2010), which
contain a good account of the recent developments in Bayesian non-parametrics; see
also Walker (2004); Walker et al. (2005). Before embarking on this topic in explicit
terms, we make some general remarks concerning consistency in the Bayesian set-
ting.

Statisticians applying Bayesian inferential methods in their work do not necessar-
ily agree on the foundations of their approach: The subjectivist Bayesians, following
De Finetti’s ideas, do not want, and do not need, to assume that there exists in re-
ality an underlying true probability generating the data. For them, probability has
a purely operative meaning, quantifying the uncertainty about unknown quantities,
with probability calculus providing a systematic framework for inductive learning
and for making rational decisions. The frequentist minded users, on the other hand,
reject the idea of subjective probabilities, and instead assume the existence of an un-
known true probability generating the data, but nevertheless pragmatically choose to
use Bayesian estimators because they work well in practice and have good proper-
ties also from the frequentist point of view. While the asymptotic properties of the
posterior distribution under the subjective probability follow simply by Doob mar-
tingale convergence theorem, a frequentist minded statistician will accept a Bayesian
procedure only if it is proved to be consistent under the hypothetical true probability
model generating the data. For non-parametric models the frequentist consistency of
Bayesian procedures is a subtle matter, since Diaconis and Freedman (1986) have
constructed examples where non-parametric priors lead to a non-consistent posterior.
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Definition 1 Let F be a space of probability densities on Rd , equipped with a topol-
ogy T , and let Π be a prior probability on F equipped with the Borel σ -algebra
σ(T ).
1. A prior Π on F is said to achieve T -consistency at f 0 ∈ F if for every T -

neighbourhood U of f 0 the posterior distribution Π(U |Y1, . . . ,Yn)→ 1 P∞

f 0 -almost

surely, where (Yi : i ∈ N) are i.i.d. observations with density f 0 under P∞

f 0 .
2. When T is the topology of weak convergence of measures, we say that the prior

Π achieves weak consistency at f 0, which means that ∀ ε > 0 and bounded con-
tinuous test function g, P∞

f 0 -almost surely

Π

({
f :
∣∣∣∣∫Rd

( f 0(s)− f (s))g(s)ds
∣∣∣∣> ε

}∣∣∣∣Y1, . . . ,Yn

)
−→ 0 .

3. When T is the L1(Rd)-norm topology, we say that the prior Π achieves strong
consistency at f 0, which means that ∀ ε > 0, P∞

f 0 -almost surely,

Π

({
f :
∫
Rd
| f 0(s)− f (s)|ds > ε

}∣∣∣∣Y1, . . . ,Yn

)
−→ 0 .

Definition 2 The Kullback-Leibler entropy of the probability density f relative to f 0

is defined as

KL( f 0, f ) :=
∫
Rd

log
(

f 0(s)
f (s)

)
f 0(s)ds .

We say that f 0 is in the KL-support of the prior Π denoted by KL(Π) if

Π
(

f : K( f 0, f )< ε
)
> 0, ∀ ε > 0 . (17)

Theorem 1 Schwartz (1965), see also Ghosh and Ramamoorthi (2003). If f 0 ∈KL(Π),
then Π achieves weak posterior consistency at f 0.
In the follow-up we consider the nonparametric class

F= { non-increasing densities on [0,∞) }.

It is shown in Walker et al. (2005) that, when the true density is non-increasing,
weak and strong consistency of the prior Π are equivalent. The next lemma is a
reformulation of their argument.

Lemma 1 Let f (x), fn(x),n∈N denote non-increasing probability densities on [0,∞),
with respective cumulative distribution functions F and Fn . We assume that F is a
proper probability distribution, F(+∞) = 1. Then

a)
∞∫

0

| fn(x)− f (x)|dx→ 0 ⇐⇒ b) Fn
w→ F
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Proof a)=⇒ b) is obvious, since for any bounded and continuous test function ψ ,∣∣∣∣∫ ∞

0
ψ(x)( fn(x)− f (x))dx

∣∣∣∣≤‖ ψ ‖∞‖ fn− f ‖L1(R+) .

We show b)=⇒ a). A non-increasing probability density has representation

f (x) =
∫

∞

x
y−1G(dy)

where

G(x) =−
∫ x

0
y f (dy) = F(x)− x f (x)

is a cumulative distribution function with G(∞) = 1 (Williamson, 1956). Note that
the distribution G is in one-to-one correpondance with the distribution H in (1):

H(dx) = µx−1G(dx), x > 0, with µ =
∫

∞

0
xH(dx) =

(∫
∞

0
x−1G(dx)

)−1

. (18)

We show that b)⇐⇒ c) =⇒ a), where

c) Gn
w−→ G .

with Gn(x) = Fn(x)− x fn(x).
For x > 0 consider the function ηx(y) = y−11(y > x). When c) holds, we approx-

imate ηx from above by the bounded continuous functions

η
ε
x (y) = ηx(y)+

(y− x+ ε)

xε
1(x− ε < y < x), 0 < ε < x

Since for 0 < ε < x

f (x− ε)≥
∫

∞

0
η

ε
x (y)G(dy)≥ f (x)≥

∫
∞

0
η

ε
x+ε(y)G(dy)≥ f (x+ ε) , and∫

∞

0
η

ε
x (y)Gn(dy)≥ fn(x)≥

∫
∞

0
η

ε
x+ε(y)Gn(dy) ,

since Gn
w→ G, we obtain

f (x− ε)≥ limsup
n

fn(x)≥ liminf
n

fn(x)≥ f (x+ ε), ∀ ε ∈ (0,x) .

This implies fn(x)→ f (x) at all continuity points of f . Then a) follows by Scheffé
lemma, since the set of discontinuities is at most countable and∫

∞

0
fn(x)dx =

∫
∞

0
f (x)dx = 1 .
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For any ψ(x) ∈ C∞
b (R+,R) ( the space of bounded smooth functions), by Fubini’s

Theorem∫
∞

0
ψ(x)F(dx) =

∫
∞

0
ψ(x) f (x)dx =

∫
∞

0
ψ(x)

(∫
∞

x
y−1G(dy)

)
dx = (19)∫

∞

0

(
y−1

∫ y

0
ψ(x)dx

)
G(dy) =

∫
∞

0
ϕ(y)G(dy)

where

ϕ(y) := y−1
∫ y

0
ψ(x)dx ∈C∞

b (R+,R)

satisfies ϕ(0) = ψ(0),ϕ
′
(0) = 1

2 ψ
′
(0) and ϕ(x)+xϕ

′
(x). Since the class C∞

b (R+,R)
determines weak convergence, we see that Gn

w→ G =⇒ Fn
w→ F .

In the other direction, for ϕ(x) ∈C∞
0 (R+,R) (the space of smooth functions with

compact support), define

ψ(x) :=
(
ϕ(x)+ xϕ

′
(x)
)
∈C∞

0 (R+,R) .

The functions φ and ψ satisfy the integral relation (19). Since C∞
0 (R+,R) is also

a convergence determining class when the limit is a proper probability distribution,
Kallenberg (2002) Lemma 5.20, we obtain the implication Fn

w→ F =⇒ Gn
w→ G �

Posterior consistency of logistic Gaussian process priors has been studied by Tok-
dar and Ghosh (2007), by using an upper bound for the Kullback information between
f 0, f ∈ C([0,T ]) involving the supremum norm. Since we work with discontinuous
densities, we shall use different inequalities.

Lemma 2 Consider functions Z,Z0 : Rd → R∪{+∞} satisfying∫
Rd

exp(−Zs)ds < ∞ and
∫
Rd

exp(−Z0
s )ds < ∞ .

The probability densities

f (t) := exp(−Zt)

(∫
Rd

exp(−Zs)ds
)−1

, f 0(t) := exp(−Z0
t )

(∫
Rd

exp(−Z0
s )ds

)−1

satisfy the inequalities

2
(∫

Rd
| f (s)− f 0(s)|ds

)2

≤ KL( f 0, f )≤
∫
Rd

{
exp(Z0

s −Zs)−1+Zs−Z0
s
}

f 0(s)ds

(20)

≤ 1
2

∫
Rd
(Zs−Z0

s )
2 f 0(s)ds , (21)

where (21) holds under the additional condition

Z0
t ≤ Zt ∀ t such that Z0

t < ∞ . (22)
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Proof: The left side of (20) is Pinsker’s inequality. By using Jensen’s inequality and
the bounds logx≤ (x−1) and exp(−x)≤ (1− x+ x2/2) for x≥ 0,

KL( f 0, f ) =
∫
Rd
(Zs−Z0

s ) f 0(s)ds+ log
(∫

Rd
exp
(
Z0

s −Zs
)

f 0(s)ds
)
≤∫

Rd

{
exp(Z0

s −Z0
s )−1+Zs−Z0

s
}

f 0(s)ds≤ 1
2

∫
Rd
(Zs−Z0

s )
2 f 0(s)ds ,

where the last inequality holds under assumption (22) �
The next lemma is about the pathwise support of a purely discontinuous subordi-

nator under the uniform norm, and we will use it combined with Lemma 2 to study
the KL-support of the corresponding logistic subordinator prior. For related results
on the pathwise support of jump processes in different topologies, see Simon (2000);
Ishikawa (2013).

Lemma 3 Let (Zt : t ∈ [0,T ]) a purely discontinuous subordinator with prior Π ,
such that Z(0) = 0 and the compensating measure satisfies ν((0,ε])> 0 ∀ ε > 0. The
support of Π in the supremum norm topology contains the continuous non-decreasing
functions Z0 : [0,T ]→ R+ with Z0(0) = 0.

Proof. For B ∈B(R+) we introduce the subordinator component

ZB
t = ∑

0<s≤t
1(∆Zs ∈ B)∆Zs ,

and denote by Π B the law of the subordinator component ZB
t on the space of cadlag

paths D([0,T ]).
For 0 < δ < ε with (0,ε)⊆ supp(ν), the subordinator has decomposition

Zt = Z(0,δ ]
t +Z(δ ,ε)

t +Z[ε,∞)
t ,

into independent components satisfying

Π
(
Z(0,δ ]

t ≤ η
)
> 0 and Π

(
Z[ε,∞)

t = 0
)
> 0 ∀ η , t > 0 .

Since the space of absolutely continuous functions is dense in C([0,T ]) with respect
to the supremum norm, without loss of generality we consider a function Z0 : [0,T ]→
[0,∞], which is non-decreasing and is absolutely continuous w.r.t. Lebesgue measure,
with Z0(0) = 0. We construct a tracking Markov jump process Z̃(δ ,ε)

t , with jumps
∆Zt ∈ (δ ,ε), such that

Π̃
(δ ,ε)

(
sup

t∈[0,T ]
|Z̃(δ ,ε)

t −Z0
t | ≤ ε

)
= 1

and the law Π̃ (δ ,ε) of the tracking Markov process Z̃(δ ,ε)
t is absolutely continuous

with respect to the law Π (δ ,ε) of the subordinator component Z(δ ,ε)
t .

Namely we specify the predictable measure compensating the jumps of Z̃(δ ,ε)
t as

ν̃
(δ ,ε)(ω;dz,dt) =

1
(
δ < z < ε +Z0− Z̃(δ ,ε)

t− (ω)
)(

ε + Z̃(δ ,ε)
t− (ω)−Z0

t
)

ν
(
(δ ,ε +Z0

t − Z̃(δ ,ε)
t− (ω))

)ν(dz)Z0(dt) .
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Let us have a closer look at the dynamics of the tracking process: it starts with

0 = Z(δ ,ε)
0 (ω)≥ (Z0

0 − ε) =−ε .

Between two consecutive jumps T0 = 0 < Tk−1 < Tk , the compensator of Tk, which
is given by∫ Tk∧t

Tk−1

(
Z̃(δ ,ε)

s− −Z0
s + ε

)−1Z0(ds) = log
(
Z̃(δ ,ε)

Tk−1
−Z0

Tk−1
+ ε
)
− log

(
Z̃(δ ,ε)

Tk−1
−Z0

Tk∧t + ε
)
,

explodes as the function (Z0
t − ε) grows towards the piecewise constant process

Z̃(δ ,ε)
t− . Consequently, with probability 1, Z̃(δ ,ε)

t will jump upwards before being reached
by the function (Z0

t −ε). Since the jump size is constrained, after the jump necessarily

Z0
t − ε < Z̃(δ ,ε)

t < Z0
t + ε .

Note also that ∆ Z̃(δ ,ε)
t > δ > 0, and the tracking Markov process will have at most

(Z0
T + ε)/δ jumps in the time interval [0,T ]. This implies that the law of Z̃(δ ,ε)

t is
absolutely continuous with respect to the law of the subordinator component Z(δ ,ε)

t ,
with Radon-Nikodym derivatives satisfying Π̃ (δ ,ε)-almost surely

dΠ̃
(δ ,ε)
T

dΠ
(δ ,ε)
T

(ω) =

(
Z̃(δ ,ε)

TNT
(ω)−Z0

T + ε
)

(
Z̃(δ ,ε)

TNT
(ω)−Z0

TNT
+ ε
)×

NT (ω)

∏
k=1

{ 1
(
δ < ∆ Z̃(δ ,ε)

Tk
(ω)< ε +Z0

Tk
− Z̃(δ ,ε)

Tk−1
(ω)
)

(
Z̃(δ ,ε)

Tk−1
(ω)−Z0

Tk−1
+ ε
)
ν
(
(δ ,ε +Z0

Tk
− Z̃(δ ,ε)

Tk− (ω))
) dZ0

dt
(Tk)

}
< ∞,

and
dΠ

(δ ,ε)
T

dΠ̃
(δ ,ε)
T

(ω) =

(
dΠ̃

(δ ,ε)
T

dΠ
(δ ,ε)
T

(ω)

)−1

> 0 ,

where Nt(ω) = #
{

k : Tk(ω) ≤ t
}

counts the jumps the tracking process. Consider
now the event

A(δ ,ε)
T =

{
ω ∈ D([0,T ]) : sup

t∈[0,T ]

∣∣Z(δ ,ε)
t (ω)−Z0

t
∣∣≤ ε

}
with Π̃ (δ ,ε)

(
A(δ ,ε)

T

)
= 1. By taking the Lebesgue decomposition of the subordinator

prior Π with respect to the law of the tracking process we deduce that

Π
(δ ,ε)

(
A(δ ,ε)

T

)
=∫

D([0,T ])

(
dΠ

(δ ,ε)
T

dΠ̃
(δ ,ε)
T

(ω)

)
Π̃

(δ ,ε)(dω)+Π
(δ ,ε)

(
A(δ ,ε)

T ∩
{

dΠ̃
(δ ,ε)
T

dΠ
(δ ,ε)
T

= 0
})

> 0 .

To conclude, note that{
ω ∈ D([0,T ]) : sup

t∈[0,T ]

∣∣Zt(ω)−Z0
t
∣∣< 2ε

}
⊇ A(δ ,ε)

T ∩
{

Z(0,δ ]
T ≤ ε

}
∩
{

Z[ε,∞)
T = 0

}
,
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and the events on the right hand side are Π -independent with strictly positive proba-
bilities �

Finally we prove the main result of this appendix, which by Theorem 1 and by
Lemma 1 implies strong consistency of the logistic subordinator prior when the true
density is bounded, non-increasing, and with compact support.
Proposition 1 Let (Zt : t ≥ 0) a purely discontinuous subordinator with prior Π ,
with Z0 = 0 and compensating measure satisfying ν((0,ε)) > 0 ∀ ε > 0. Then any
bounded non-increasing probability density f 0 on R+ with compact support is in the
KL-support of the logistic subordinator prior determined by Π .
Proof: Let

T = inf
{

t ≥ 0 : f 0(t) = 0
}
< ∞

and for ε > 0, introduce the non-decreasing function

Z0(t) =
(
log f 0(0)− log f 0(t)− ε

)
≥−ε , t ∈ [0,T ] .

Note that we could have either f 0(T−) > 0 and Z0(T−) < ∞, or f 0(T−) = 0 and
Z0(T−) = ∞. Our argument covers both situations.

Since lim
x→+∞

ex(e−x−1+ x)→ 1, for some T ′ = T ′ε ∈ (0,T ) we have

∫ T

T ′

{
exp(Z0

t −Z0
T ′)+Z0

T ′ −Z0
t −1

}
f 0(t)dt ≤ ε . (23)

The convolution of Z0 restricted to the interval [0,T ′] with the distribution of a ran-
dom variable uniform on the interval [−η ,0] with η > 0, is an absolutely continuous
non-decreasing function Z0 such that

Z0(t)≤ Z0
(t) ∀ t ∈ [0,T ′], Z0(T ′) = Z0

(T ′),

and, when η is small enough,∫ T ′

0
(Z0

t −Z0
t )

2 f 0(t)dt ≤ ε .

By the construction of Lemma 3, and the independent increments property, the set

Aε =
{

Z0
t ≤ Zt(ω)≤ Z0

t + ε, ∀ t ∈ [0,T ′]
}
∩
{

Zt(ω)−ZT ′(ω)≤ ε, ∀ t ∈ [T ′,T ]
}
⊂ D([0,1])

has prior probability Π(Aε)> 0. Since Z0
t ≤ Z0

t ≤ Zt(ω)≤ (Z0
t + ε) for ω ∈ Aε and

t ∈ [0,T ′], by using the inequalities from Lemma 2 together with (23), it follows that

KL
(

f 0, f (ω)
)
≤∫ T ′

0

(
Zt(ω)−Z0

t
)2 f 0(s)ds+

∫ T

T ′

{
exp
(
Z0

t −Zt(ω)
)
+Zt(ω)−Z0

t −1
}

f 0(t)dt

≤ 2
∫ T ′

0

(
Zt(ω)−Z0

t
)2 f 0(t)dt +2

∫ T ′

0

(
Z0

t −Z0
t
)2 f 0(t)dt

+
∫ T

T ′

{
exp
(
Z0

t −Z0
T ′
)
+Z0

T ′ −Z0
t −1+2ε

}
f 0(t)dt ≤ 2ε

2 +5ε , ∀ ω ∈ Aε ,
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which implies ∀ ε > 0

Π
(
K( f 0, f )≤ 2ε

2 +5ε
)
≥Π(Aε)> 0 �

Remark Proposition 1 does not apply to unbounded densities and densities with non-
compact support. However the densities of form (2) are bounded, and in lifetime data
studies one can safely restrict the analysis to densities with compact support.

Corollary 1 Consider the probability distribution function

H0(t) = 1− exp(−Z0(t)), t ≥ 0, with Z0(0) = H0(0) = 0 .

Under the assumptions of Proposition 1, the posterior distribution of
H(t) = (1− exp(Z(t))) is weakly consistent at f 0, meaning that
∀ ε > 0 and ψ ∈Cb(R+,R),

Π

(∣∣∣∣∫ ∞

0
ψ(x)H(dx)−

∫
∞

0
ψ(x)H0(dx)

∣∣∣∣> ε

∣∣∣∣Y1, . . . ,Yn

)
→ 0

P∞

f 0 -almost surely, where the observations (Yi : i ∈ N) are i.i.d. with density f 0.

Proof: It is enough to show that Gn
w→ G0 =⇒ Hn

w→ H0, where, in the notations of
Lemma 1,

H0(dx) = µ
0x−1G0(dx), Hn(dx) = µnx−1Gn(dx), x > 0, (24)

with µ
0 =

(∫
∞

0
x−1G0(dx)

)−1

and µn =

(∫
∞

0
x−1Gn(dx)

)−1

. (25)

We use Skorokhod representation, and construct on the same probability space (Ω ,F ,P)
random variables U(ω),ξ 0(ω),ξn(ω),n ∈ N such that

P(ξ 0 ≤ t) = G0(t), P(ξn ≤ t) = Gn(t), and ξn(ω)→ ξ (ω) P-almost surely,

while U is uniformly distributed on [0,1] and independent from (ξ 0,ξn : n ∈ N).
Consider now the r.v. η0(ω) = U(ω)ξ 0(ω) and ηn(ω) = U(ω)ξn(ω), which

have non-increasing probability densities

pη0(y) = 1−H0(y) and pηn(y) = 1−Hn(y), respectively.

Now ηn(ω)→ η0(ω) P-almost surely, which implies convergence in distribution,
and by Lemma 1 we obtain∫

∞

0
|Hn(y)−H0(y)|dy→ 0 as n→ ∞ .

Finally, ∀ ψ ∈ C∞
0 (R+,R), (the space of smooth functions with compact support),

integrating by parts we obtain∣∣∣∣∫ ∞

0
ψ(x)(Hn(dx)−H0(dx))

∣∣∣∣= ∣∣∣∣∫ ∞

0
ψ
′(x)(H0(x)−Hn(x))dx

∣∣∣∣
≤‖ ψ

′ ‖∞‖ H0−Hn ‖L1(R+)→ 0 ,

which means Hn
w→ H0, since C∞

0 (R+,R) is a convergence determining class when
the limiting distribution is proper �
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Fig. 1 current duration density estimators, under LGGC prior, a= 1.5, with augmentation, without cut-off,
simulated data from U([0,1]), n = 10000.

Fig. 2 TTP-survival estimators, under LGGC prior, a= 1.5, with augmentation, without cut-off, simulated
data from U([0,1]), n = 10000.
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Fig. 3 current duration density estimators, under LGGC prior, a= 0.1, with augmentation, without cut-off.

Fig. 4 current duration density estimators, under LGGC prior, a = 0.1, with augmentation, cut-off t0 = 2
weeks.
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Fig. 5 current duration density, under LGGC prior, a = 0.1, without augmentation, without cut-off.

Fig. 6 current duration density, under LGGC prior, a = 1, without augmentation, without cut-off.
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Fig. 7 TTP-survival estimators, under LGGC prior, with augmentation, a = 0.1, without cut-off.

Fig. 8 TTP-survival estimators, under LGGC prior, with augmentation, a = 0.1, cut-off t0 = 2 weeks.



30 Gasbarra et al.

Fig. 9 TTP survival,under LGGC prior, without augmentation, a = 0.1, without cut-off.

Fig. 10 TTP survival, under LGGC prior, without augmentation, a = 1, without cut-off.
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Fig. 11 Results from a simulation experiment on estimating the current duration density, based on M =
4050 replicated datasets of size n = 867, under LGGC prior with a = 0.05.

Fig. 12 Results from a simulation experiment on estimating the TTP distribution, based on M = 4050
replicated datasets of size n = 867, under LGGC prior with a = 0.05.


