22 research outputs found

    Theoretical models to calculate stopping and ionization ratios of H2+ molecules in solid targets

    Get PDF
    In this work we study the vicinage effects that arise in the interaction of molecular projectiles with solids, considering, in particular, the effects produced by the excitation of inner shells. For this purpose, we use two different approaches. On one side we extend the use of the semiclassical impact-parameter model for the excitation of atomic shells, considering quantum corrections and the role of target screening in the vicinage effects. On the other hand, we adapt our extended wave-packet model, developed in a previous work to the calculation of stopping ratios and ionization cross sections for correlated ions. This model introduces modifications to the wave-packet method originally proposed by Kaneko, using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. Finally, we add the contribution of valence electrons calculated with the Lindhard free-electron-gas model and compare with experimental results of vicinage effects in the energy-loss and ionization cross sections for hydrogen molecules interacting with C, Al, Si, Al2O3, and SiO2 targets.Fil: Archubi, Claudio Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Arista, Nestor Ricardo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Unified description of interactions and energy loss of particles in dense matter and plasmas

    Get PDF
    In this work, we propose a unified model to evaluate processes of electronic interactions of charged particles with hot and dense matter, including energy losses, mean free paths, and thermalization ranges of protons or other light ions. To formulate this method, we introduce modifications to the extended-wave-packet method, which allows one to describe and evaluate the effects of ionization as well as changes in target density and temperature. The ionization of the target leads to the formation of a dense surrounding plasma with distinct energy-absorption properties. We use this unified method to evaluate the contributions of inner shells and free electrons (produced by the target ionization) to the energy loss of protons in Si, C, and Fe targets, on an extensive range of parameters that include low, intermediate, and high energies, with densities and temperatures going from normal laboratory conditions to very high values, such as those of interest for inertial fusion and astrophysical studies.Fil: Archubi, Claudio Darío. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Arista, Nestor Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Stopping power of fluorides and semiconductor organic films for low-velocity protons

    Get PDF
    A combined experimental and theoretical study of the energy loss of protons in fluorides and organic films is presented. The measurements were performed in fresh AlF3, LiF, and N,N′-bis(1-ethylpropyl)-perylene-3,4,9,10- tetracarboxdiimide (EP-PTCDI) evaporated in situ on self-supported C or Ag foils, covering the very low energy range from 25 keV down to 0.7 keV. The transmission method is used in combination with time-of-flight (TOF) spectrometry. In the case of fluorides with large band gap energies (AlF3 and LiF), the experimental stopping power increases almost linearly with the mean projectile velocity showing a velocity threshold at about 0.1 a.u. These features are well reproduced by a model based on quantum scattering theory that takes into account the velocity distribution and the excitation of the active 2p electrons in the F- anions, and the properties of the electronic bands of the insulators. In the case of the semiconductor organic film with a lower gap, the experimental stopping power increases linearly with the mean projectile velocity without presenting a clear threshold. This trend is also reproduced by the proposed model.Fil: Serkovic Loli, Laura Natalia. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Sánchez, Esteban Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Grizzi, Oscar. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Arista, Nestor Ricardo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Nonlinear stopping effects of slow ions in a no-free-electron system: Titanium nitride

    Get PDF
    A recent experimental study of the energy losses of various ions in titanium nitride, in the low-energy range [M. A. Sortica, Sci. Rep. 9, 176 (2019)2045-232210.1038/s41598-018-36765-7], showed a striking departure of the measured values from those predicted by density functional theory. They suggested electron promotion in atomic collisions between dressed atoms as an explanation. In this Rapid Communication, we investigate the process of energy loss of slow ions in TiN using theoretical formulations that are based, on one side, on self-consistent models of nonlinear screening and quantum scattering theory, and on the other, on ab initio computations of the electron-density profile of titanium nitride. Two theoretical approaches are considered to determine the average energy transfer: One is based on the local-density approximation for the inhomogeneous electron gas corresponding to the calculated density of TiN, and the other is based on the Penn model for the convolution of the inhomogeneous electron-gas response based on a measured electron-loss function. Both approaches produce very similar results and are in remarkable agreement with the experimental data, indicating that the observed enhancement in the energy-loss values is due to the contribution of a range of electron densities in the TiN compound.Fil: Matias Da Silva, Flávio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Grande, P. L.. Universidade Federal do Rio Grande do Sul; BrasilFil: Vos, M.. The Australian National University; AustraliaFil: Koval, Peter. Donostia International Physics Center; EspañaFil: Koval, Natalia E.. Comisión de Investigaciones Científicas. Nanogune; EspañaFil: Arista, Nestor Ricardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentin

    Systematic analysis of different experimental approaches to measure electronic stopping of very slow hydrogen ions

    Get PDF
    The electronic stopping cross section (SCS) of Ni for slow H+, H2 +, D+ and D2 + ions has been investigated for different types of targets in two complementary experimental geometries, i.e., in transmission and backscattering. To warrant sample purity, both a high purity nickel sheet and nanometer Ni layers were prepared in-situ under ultra-high-vacuum conditions. In an alternative approach, ultra-thin samples were prepared ex-situ as self-supporting foils and as nanometer films on a polished substrate (silicon). Identical SCS results are obtained in backscattering using the in-situ prepared film and the high purity sheet. The ex-situ prepared targets contained considerable concentrations of impurities of low atomic numbers, whose contribution to the SCS can be rectified by applying Bragg's rule using TRIM stopping for the impurities. In this way for the ex-situ targets the accuracy of the resulting SCS data is improved considerably. Concordant stopping cross section data are obtained in both geometries. The achieved accuracy does, however, not permit to spot a possible influence of different impact parameter regimes explored in transmission and in backscattering geometries.Fil: Roth, D.. Johannes Kepler Universitat Linz; AustriaFil: Celedon, C. E.. Universidad Técnica Federico Santa María; Chile. Johannes Kepler Universitat Linz; Austria. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Goebl, D.. Johannes Kepler Universitat Linz; AustriaFil: Sánchez, Esteban Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Bruckner, B.. Johannes Kepler Universitat Linz; AustriaFil: Steinberger, R.. Johannes Kepler Universitat Linz; AustriaFil: Guimpel, Julio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Arista, Nestor Ricardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Bauer, P.. Johannes Kepler Universitat Linz; Austri

    Energy loss of protons and deuterons at low energies in Pd polycrystalline thin films

    Get PDF
    We have investigated experimentally and by computer simulations the energy loss  distributions of low energy (E <10 keV) protons and deuterons transmitted through  polycrystalline palladium thin flms. In contrast with previous experiments on various transition metals we find that the stopping power of Pd is proportional to the ion velocity. Data of protons and deuterons are coincident within the experimental uncertainties, showing the absence of an isotopic effect on the stopping power of Pd in this energy range. The experimental results were analyzed and compared with Monte Carlo computer simulations and previous theoretical models. The dference in the velocity dependence of the energy loss of hydrogen ions in Pd with respect to other transition metals (Cu, Ag and Au) is explained by a theoretical analysis based on the properties of the d-electron bands of those elements.Fil: Celedón, C.. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Sanchez, Esteban Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Arista, Nestor Ricardo. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Uribe, J. D.. Universidad Técnica Federico Santa María. Departamento de Física. Laboratorio de Colisiones Atómicas; ChileFil: Mery, M.. Universidad Técnica Federico Santa María. Departamento de Física. Laboratorio de Colisiones Atómicas; ChileFil: Valdés, J. E.. Universidad Técnica Federico Santa María. Departamento de Física. Laboratorio de Colisiones Atómicas; ChileFil: Vargas, P.. Universidad Técnica Federico Santa María. Departamento de Física. Laboratorio de Colisiones Atómicas; Chil

    Ground- and excited-state scattering potentials for the stopping of protons in an electron gas

    Get PDF
    The self-consistent electron–ion potential V(r) is calculated for H+ ions in an electron gas system as a function of the projectile energy to model the electronic stopping power for conduction-band electrons. The results show different self-consistent potentials at low projectile-energies, related to different degrees of excitation of the electron cloud surrounding the intruder ion. This behavior can explain the abrupt change of velocity dependent screening-length of the potential found by the use of the extended Friedel sum rule and the possible breakdown of the standard free electron gas model for the electronic stopping at low projectile energies. A dynamical interpolation of V(r) is proposed and used to calculate the stopping power for H+ interacting with the valence electrons of Al. The results are in good agreement with the TDDFT benchmark calculations as well as with experimental dat

    Stopping power of dense plasmas: The collisional method and limitations of the dielectric formalism

    Get PDF
    We present a study of the stopping power of plasmas using two main approaches: the collisional (scattering theory) and the dielectric formalisms. In the former case, we use a semiclassical method based on quantum scattering theory. In the latter case, we use the full description given by the extension of the Lindhard dielectric function for plasmas of all degeneracies. We compare these two theories and show that the dielectric formalism has limitations when it is used for slow heavy ions or atoms in dense plasmas. We present a study of these limitations and show the regimes where the dielectric formalism can be used, with appropriate corrections to include the usual quantum and classical limits. On the other hand, the semiclassical method shows the correct behavior for all plasma conditions and projectile velocity and charge. We consider different models for the ion charge distributions, including bare and dressed ions as well as neutral atoms.Fil: Clauser, Cesar Fernando. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arista, Nestor Ricardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentin

    Multiple scattering of slow ions in a free electron gas

    Get PDF
    We study the influence of electronic scattering on the angular distributions of ions and atoms moving through a free-electron gas. We present a general formulation based on the multiple-scattering formalism, using two alternative descriptions: a linear approach based on Lindhard’s dielectric function, and a nonlinear treatment based on density functional calculations. We obtain analytical expressions for the multiple-scattering function and for the half-width of the distribution. We show the results of several calculations for slow hydrogen and helium and their isotopes. We analyze the results and obtain analytical approximations for all of the cases. The magnitude of the electronic effects on the multiple scattering distribution is determined and compared with previous estimations.Fil: Archubi, Claudio Darío. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Arista, Nestor Ricardo. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentin

    Energy loss and Z oscillation of atomic beams in plasmas

    Get PDF
    We apply a semiclassical partial-wave-scattering method based on the Wentzel-Kramers-Brillouin approximation to study the transport cross section and the energy loss of neutral or ionized atomic beams in plasmas. This approach reproduces the exact quantum result in a satisfactory manner, even in several extreme conditions of plasma densities and temperatures, and agrees with the results of linear or perturbative calculations for bare ions in the appropriate limits. We pay special attention to low projectile speeds where strong oscillations in the transport cross section and energy loss - as a function of projectile's atomic number - are observed. We study these oscillatory phenomena varying the projectile speed and its ionization degree and the plasma temperature and density. We analyze in physical terms these effects and present a diagram of plasma conditions showing the regions where these oscillations may occur for both neutral and ionized beams.Fil: Clauser, Cesar Fernando. Comisión Nacional de Energí­a Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Balseiro). División Colisiones Atómicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arista, Nestor Ricardo. Comisión Nacional de Energí­a Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Balseiro). División Colisiones Atómicas; Argentin
    corecore