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Unified description of interactions and energy loss of particles in dense matter and plasmas
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In this work, we propose a unified model to evaluate processes of electronic interactions of charged particles
with hot and dense matter, including energy losses, mean free paths, and thermalization ranges of protons or
other light ions. To formulate this method, we introduce modifications to the extended-wave-packet method,
which allows one to describe and evaluate the effects of ionization as well as changes in target density and
temperature. The ionization of the target leads to the formation of a dense surrounding plasma with distinct
energy-absorption properties. We use this unified method to evaluate the contributions of inner shells and free
electrons (produced by the target ionization) to the energy loss of protons in Si, C, and Fe targets, on an extensive
range of parameters that include low, intermediate, and high energies, with densities and temperatures going from
normal laboratory conditions to very high values, such as those of interest for inertial fusion and astrophysical
studies.
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I. INTRODUCTION

The interaction of energetic particles with matter subject to
extreme conditions of densities and temperatures is a subject
of great interest and relevance in different areas of research,
such as current developments on magnetic and inertial fusion,
as well as in studies of various astrophysical environments. In
particular, interaction processes in materials such as carbon,
silicon, and iron are some of the typical and common cases of
interest in those studies.

Within the field of magnetic fusion research, elements cur-
rently tested as appropriate materials for first-wall or divertor
components in Tokamak devices (plasma-facing materials),
including the International Thermonuclear Experimental Re-
actor (ITER) project, consider graphite, Fe, and C and Si
composites, among other elements [1–3]. The effect of in-
tense irradiation (sputtering) of these materials by protons,
deuterons, or alpha particles is a subject of central interest for
magnetic fusion research [2,4].

In addition, C, Al, Si, and related composites are among
a list of currently studied elements considered for possi-
ble use in inertial-confinement fusion (ICF) devices [5–9].
These studies require a precise knowledge of the properties
of various materials on a very wide range of densities and
temperatures. In particular, the range of densities from 1015

to 1025 particles per cm3 and temperatures from tens of eV to
tens of keV are within the range of interest for these studies
[10,11]. Numerous studies of irradiation of various targets
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with light and heavy ions as well as ion clusters have been
made [12–24].

In a very different area, C, Si, and Fe are of central interest
in studies of stellar interiors, such as in the cases of giant stars
or white dwarfs. Thus, for instance, carbon and silicon burning
in massive stars are important stages in the process of stellar
evolution [25,26]. The ranges of densities and temperatures of
interest for these studies are extremely wide. Core conditions
in massive stars evolve from central densities rising from 105

to 109 g/cm3, and temperatures in the range of 108–109 K, as
the processes of C, O, Ne, and Si burn take place [27], with a
chain of processes ending up in iron-rich stars, as a nearly final
stage previous to a supernova explosion [25,26]. By similar
considerations, dwarf stars may also be considered, restricting
our calculations to the nonrelativistic regime in the case of
white dwarfs [27,28]. (The less extreme cases of brown or red
dwarfs are also within the general coverage of the present ap-
proach.) Considering the typical speeds of electrons in dense
plasmas, a relativistic limit may be estimated in the range of
temperatures of ∼109 K and electron densities of ∼1029 cm−3

(equivalent to mass densities of ∼3 × 105 g/cm−3 for carbon-
rich stars).

There has not been a unified theoretical framework to de-
scribe the interaction of charged particles with matter under
such diverse conditions, and therefore different approaches
are usually combined. The main purpose of this study is to
present a unified description that may be applied to the wide
range of conditions described before. Our model includes the
description of electronic excitations produced on both atomic
shells and on the surrounding plasma of free electrons, under
conditions of high densities and temperatures. To show the
range of applicability of this approach, we will apply it to
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several cases of interest that span the wide range of conditions
described above.

The use of dielectric-function models to describe the inter-
actions and energy-loss processes of particles in matter has
a long and very rich history. Starting with the pioneering
work of Lindhard [29] and Ritchie [30], the use of these
models to describe inelastic interactions became one of the
most useful methods in this area. However, these models
were built on the assumption of a free-electron gas, most
appropriate to the case of conduction or valence electrons.
More elaborate models that extend the applicability to inner
shells make use of the shellwise local plasma approximation,
showing good agreement with experiments. A comprehensive
review of this method was recently presented in Ref. [31],
where reference to previous work is made. Alternative mod-
els based on semiclassical assumptions were also developed
to describe classical and quantum plasmas [32–35]. Addi-
tionally, the interaction of charged particles with plasmas of
arbitrary degeneracy was studied [36–39].

A further extension of the dielectric-function approach
was made by Kaneko, who in a series of papers [40–42]
developed the wave-packet model (WPM) of dielectric re-
sponse to describe, in a very general way, the ionization of
atomic shells. More recently, we have extended Kaneko’s
wave-packet model in order to include the effects of binding
energies of the various shells [43–45]; the result of this previ-
ous study is called the extended-wave-packet model (EWPM).
In the present study, we reformulate the EWPM in order to de-
scribe both bound and free plasma electrons under conditions
of thermal equilibrium. This will provide us with a second
extension of the wave-packet model. Since this formulation
covers all the usual states of matter, i.e., atoms, ions, solids
and plasmas, we refer to this approach as the unified wave-
packet model (UWPM).

After formulating the model in a general way, we will
consider some particular cases in the interaction of energetic
protons with three typical elements, i.e., C, Si, and Fe, under
rather extreme conditions of densities and temperatures, as
well as highly ionized plasmas in typical stellar interiors,
showing in particular the effects of changes in density, tem-
perature, and ionization state.

The paper is organized as follows. In Sec. II, a summary
of the dielectric model for a free-electron gas in thermal
equilibrium is presented. In Sec. III, the WPM approach is
briefly described together with our extension that considers
the binding energy for each electronic shell of the target
(EWPM). A further and different extension is presented in
Sec. IV for hot quantum plasmas, completing our so-called
unified wave-packet model (UWPM). In Sec. V, experimental
and theoretical results from calculations are discussed for a
wide variety of cases, from cold solid targets to hot stellar
regions. Finally, conclusions are summarized in Sec. VI.

II. DIELECTRIC FUNCTION OF QUANTUM PLASMAS

The response of the free plasma electrons to an external
perturbation may be treated following the original analyses
made by Lindhard [29] and Ritchie [30] for a charged particle
traveling through a free-electron gas. These original treat-
ments were restricted to the case of a degenerate plasma

with temperature T = 0; however, the same analysis using
quantum mechanical perturbation theory can be made for the
case of dense plasmas in thermal equilibrium [38], using the
most general expression for the dielectric function,

ε(k, ω) = 1 + e2

π2k2

∫
d3k′ f (

−→
k + −→

k′ ) − f (
−→
k′ )

h̄ω + iδ − (E−→
k +−→

k′ − E−→
k′ )

,

(1)

where E−→q = h̄2q2/2m, and f (
−→
k ) is the Fermi-Dirac distri-

bution function for plasmas of arbitrary degree of degeneracy,

f (
−→
k ) = {1 + exp[β(Ek − μ)]}−1, (2)

where β = 1/kBT , Ek = h̄2k2/2m, and μ is the chemical po-
tential of the plasma, with electron density n and temperature
T . The chemical potential may be calculated with the Fermi-
Dirac integral of order 1/2 using Eq. (6) of Ref. [38].

Classical and semiclassical results for the dielectric func-
tion are obtained from this expression for the long-wavelength
and low-frequency limit, making the following approxima-

tions:
−→
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k′ ) − f (
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−→
k′ ) =

h̄
−→
k · −→v (∂ f /∂E ), and E−→

k +−→
k′ − E−→

k′
∼= −→

k · −→∇ k′Ek′ =
h̄
−→
k · −→v .
From Eq. (1), the integral for the imaginary part of the

dielectric function can be made in an exact way for all degrees
of degeneracy and yields [38]

ε2(k, ω) ∼= πχ2
0

8z3
θ ln

{
1 + exp [η − D(u − z)2]

1 + exp [η − D(u + z)2]

}
, (3)

where χ2
0 = 1/πkF a0, θ = kBT/EF , D = 1/θ, η = βμ =

μ/kBT, u = ω/kvF , z = k/2kF , with EF = h̄2k2
F /2m the

Fermi energy and kF the corresponding wave vector, and
where a0 is the Bohr radius and kB is Boltzmann’s constant.

In the limit of high temperatures, where the restrictions
imposed by the Pauli principle may be neglected, ε2(k, ω)
takes the form [38]

ε2(k, ω) ∼= πχ2
0

8z3
θ eη

[
e−D(u−z)2 − e−D(u+z)2]

(4)

and the factor eη is approximated by

eη ∼= 4

3
√

π

1

θ3/2
, (5)

which leads to

ε2(k, ω) ∼=
√

π

6

χ2
0

θ1/2z3

[
e−D(u−z)2 − e−D(u+z)2]

. (6)

It should be noticed that this expression still contains the
quantum behavior usually characterized as the Bethe ridge,
which arises around the line u = z (in the u-z plane), corre-
sponding to the condition ω = h̄k2/2m; i.e., energy transfer in
single-particle excitations [29,30,38]. Therefore, this provides
a correct description of short-range excitations and eliminates
the need to introduce a cutoff when integrating the total-
energy loss as is required by the classical or semiclassical
descriptions [34,35].
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The real part of the dielectric function may be obtained
from ε2(k, ω) using the Kramers-Kronig relations. Explicit
integral forms and approximations are given in Ref. [38].

Finally, the energy-loss function is defined as

F (k, ω) = Im

[ −1

ε(k, ω)

]
, (7)

which is used to describe a process of energy transfer h̄ω and

momentum transfer h̄
−→
k to the electron gas.

The analysis of the energy-loss function can be made
through approximative solutions of the so-called Fermi-Dirac
integrals for different limits and leads to specific quantum
mechanical expressions for low temperatures, where the re-
strictions produced by the Pauli principle becomes relevant,
and for high temperatures, where connections with classical
results can be made.

For the particular limit of low frequencies and high tem-
peratures, the energy-loss function obtained from the quantum
treatment yields the following expression [38]:

F (k, ω) ∼= nm2e2kω

(k2 + k2
D)2

[
2π

mkBT

]3/2

exp

[ −h̄2k2

8mkBT

]
, (8)

where kD = ωp(m/kBT )1/2 is the Debye screening constant.
This expression differs from the corresponding classical result
by the exponential term, which produces a gradual fading of
the interactions with high momentum transfers (i.e., a gradual
cutoff of high-k values).

This expression will be used later on to obtain an analytical
approximation for the low-energy stopping power.

III. KANEKO’S WAVE-PACKET MODEL

In our unified model, the contribution of bound states to
the target response is calculated using our extension of the
wave-packet model [43–45]. The approach has been devel-
oped for targets at T = 0 and assumes that the population of
each atomic shell corresponds to the maximum number Ns

of electrons associated to the shell in the ground state. The
most important assumption is the consideration of Gaussian
distributions for the electron velocities of the atomic shells,
namely, f (v) ∼ e−v2/v2

, where v is a characteristic speed of
the considered shell. The dielectric function for this system
is described according to the Kaneko’s model [40–42] in
terms of a characteristic wave vector q, which is related to
v by h̄q = mv, where m is the electron mass. The value of
q is determined by the relation q = q1N1/3

s , where q1 is a
shell parameter whose value is determined from Hartree-Fock
calculations of electron-velocity distributions using the results
of previous authors [46,47].

A. Dielectric function

By assuming Gaussian distributions of electron speeds,
the wave-packet model yields closed analytical expressions
for the real and imaginary parts of the dielectric function
ε(k, ω) = ε1(k, ω) + iε2(k, ω), where k and ω are the wave-
vector and frequency variables. The results for ε1 and ε2 may
be cast in a convenient way in terms of the dimensionless

variables u′ = ω/kv and z′ = k/2q (which are analogous to
the Lindhard’s u, z variables), as follows [40]:

ε1(u′, z′) = 1 + χ2

8

1

z′3 [G(u′ + z′) − G(u′ − z′)], (9)

ε2(u′, z′) = πχ2

8

1

z′3
[
e−(u′−z′ )2 − e−(u′−z′ )2]

, (10)

with a parameter χ2 = e2/π h̄v.

The function G(x) is defined by

G(x) = 2
√

πx
∫ 1

0
e(t2−1)x2

dt . (11)

Although this dielectric function was originally proposed
by Kaneko to represent the response of bound electrons,
he also set relations that allow this function to represent
the response of a free-electron gas (FEG) at T = 0, like in
the case of conduction electrons in metals or valence elec-
trons in semiconductors with small energy gaps. In this case,
Kaneko [41] showed a correspondence between his WPM and
Lindhard’s FEG formulation [29], where the q parameter is
connected with the electron gas parameter rs by the relation
q = 1.745/rs.

B. Extended wave-packet model

In a recent publication [43], we introduced the effect of en-
ergy binding in the wave-packet formulation using a method
proposed by Levine and Louie (LL) [48]. This method con-
sists of performing a shift in the frequency variable by the
replacement, ω → √

ω2 − ω2
s , where ωs = Is/h̄, and Is is an

energy gap which in the present case is the binding energy of
a given atomic shell.

Specifically, the new dielectric function ε̃ becomes, for
ω > ωs,

ε̃1(k, ω) = ε1
(
k,

√
ω2 − ω2

s

)
, (12)

ε̃2(k, ω) = ε2
(
k,

√
ω2 − ω2

s

)
, (13)

whereas for ω < ωs, ε̃2(k, ω) = 0, while ε̃1(k, ω) is obtained
from ε̃2(k, ω) using the Kramers-Kronig relations. In this way,
the LL method opens a gap in the map of excitations such
that inelastic processes occur only for frequencies ω > ωs. For
this reason, all the quantities calculated here will be obtained
from integrals in the domain ω > ωs, where the values of ε̃1

and ε̃2 can be expressed analytically in terms of Eqs. (9)–(13).
We refer to this approach as the extended wave-packet model
(EWPM).

Finally, as is well known, the dielectric function of a
free-electron gas satisfies specific sum rules. An important
property of these models is that they also satisfy those sum
rules [43,48].

C. Integrals for the energy-loss moments

The main moments of the energy-loss distribution are given
by the following integrals (with n = 0, 1, 2, . . . ) [43,49]:

Qn = 2

π

(Zpe

v

)2

h̄n−1
∫ ∞

0

dk

k

∫ kv

0
ωn Im

[ −1

ε̃(k, ω)

]
dω,

(14)
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where Zpe and v are the charge and velocity of the incident
particle. The units of Qn are [energy]n/length.

When n = 0, 1, and 2, this expression of Qn yields the
values of the inverse inelastic mean free path, stopping power,
and energy straggling, respectively, i.e.,

(i) inverse inelastic mean free path (IMFP): 1/λi = Q0,
(ii) stopping power: S = |〈dE/dx〉| = Q1,
(iii) energy straggling: 
2 = 〈δE2〉/dx = Q2.
In particular, the expression for the stopping power be-

comes

S = dE

dx
= 2

π

Z2
pe2

v2

∫ ∞

0

dk

k

∫ kv

0
dω ω Im

[ −1

ε(k, ω)

]
. (15)

In the following, we will also refer to the “stopping cross
section” (SCS) defined usually as SCS = S/na, where na is
the target atomic density.

IV. WAVE-PACKET MODEL FOR PLASMAS

A. Extension of the dielectric model to quantum plasmas

In this section, we wish to perform a further extension of
the wave-packet model with the purpose of describing, with
the same formulation, the dielectric response of a plasma
of free electrons in thermal equilibrium. This is a central
question in order to achieve a unified description applicable
to all targets. To accomplish this, we will make a connec-
tion between the full dielectric function of quantum plasmas
described in Sec. II and the corresponding WPM described
before. To establish this connection, we compare Eqs. (6) and
(10), identifying the arguments of the corresponding exponen-
tial terms, as well as the prefactors in both expressions. This
yields u′ = √

Du = u/θ1/2, z′ = √
Dz = z/θ1/2, and

√
π

6

χ2
0

θ1/2
= πχ2

8
θ3/2. (16)

And considering the definitions u = ω/kvF , z =
k/2kF , u′ = ω/kv, z′ = k/2q, and χ2

0 = 1/πkF a0, we
obtain the parameters for the plasma within the framework of
the WPM:

q = kF θ1/2, v = vF θ1/2 (17)

and

χ2 = 4

3
√

π

1

πkF a0

1

θ2
. (18)

In this way, we obtain an analytical extension of the WPM
dielectric function that represents the quantum behavior of
free electrons in a plasma.

We now wish to show that the present formulation is able
to describe the properties of the plasma on a very wide range
of temperatures and densities. To show this, we will compare
the results obtained with the present model with those of the
exact dielectric function of a quantum plasma of Ref. [38].

First, it may be observed that this approach should yield
the correct behavior for high enough temperatures, such that
kBT 
 EF , where the use of Gaussian distributions for the
electron speeds is most appropriate. The question then is to
test the behavior of this model in the case of temperatures
comparable to or smaller than EF . In a previous work [50],
it was shown that a Maxwell-Boltzmann type of approach

can be extended down to temperatures close to EF by re-
placing the actual temperature T by an effective temperature
T ∗ corresponding to the mean-square velocity of the Fermi-
Dirac distribution. Hinging on this idea, we searched for an
extension of our model that could cover the complete range
of temperatures, including low (kBT � EF ) and high (kBT 

EF ) limits, as well as the transition range where kBT ∼ EF .

To make this extension, we considered a quadratic interpo-
lation between kBT and EF of the form

kBTe f f =
√

(kBT )2 + λE2
F , (19)

where λ is a fitting parameter. The parameter θ in Eqs. (15)
and (16) is now redefined as θ = kBTe f f /EF . After a compre-
hensive set of comparisons, we found that the value λ = 0.4
allows a very satisfactory representation, on the whole range
of temperatures, of the exact results obtained by other meth-
ods.

To illustrate this point, we show a set of comparisons in
Fig. 1, for a quantum plasma with rs = 2. For T = 0, we com-
pare the results of this approach with those obtained from the
degenerate FEG calculations using q = 1.745/rs, in accord
with Kaneko‘s work [41], and with the Lindhard theory. For
finite temperatures, the reference values are those obtained
from the exact dielectric function of a quantum plasma, valid
for all degrees of degeneracies, given in Ref. [38], which will
be referred to as the AB theory.

The results shown in Fig. 1 cover different degrees of
degeneracy, measured by the parameter θ. In Fig. 1(a), we
show the case T = 0, i.e., a fully degenerate electron gas. Here
we compare with the two sets of reference values for T = 0:
Kaneko’s WPM and the AB theory (which for T = 0 coin-
cides exactly with the Lindhard theory). The main differences
arise in the region of the stopping power maximum, where
our calculation falls in between the two sets of reference
points, providing a kind of average of those reference values.
Figures 1(b)– 1(d) show additional comparisons for increasing
values of the temperature. In these cases, the best reference
values are those obtained with the exact AB theory. These
panels shown that the results of the present model quickly
approach those of the AB theory when kBT becomes close to
or larger than EF . In fact, for kBT ∼ EF , the agreement with
the AB results is excellent and becomes almost exact as T
increases.

Therefore, we conclude that the present approach provides
an excellent method to calculate the stopping power of plas-
mas for all degrees of degeneracy.

B. Effects of target ionization

As explained before, the main purpose of this study is to
formulate a unified model to take into account the effects of
target ionization on the energy loss and related precesses in
dense media at high temperatures. Therefore, in the next sec-
tion, we will consider various target elements of main interest
assuming different degrees of ionization, starting from ground
state at temperature T = 0 and then taking increasing values
of both the temperature and the ionization degree. Under these
conditions, we will calculate, on one side, the contribution
of either filled or partially filled atomic shells and, on the
other, the contribution of the surrounding plasma formed by
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FIG. 1. Stopping power values calculated with the present approach (solid red lines) and comparisons with reference values for a quantum
plasma with rs = 2 and various temperatures. (a) Curve with solid circles: exact results calculated with Lindhard’s dielectric function and with
the AB theory (which coincides with the Lindhard function at T = 0); open circles: results of Kaneko’s WPM model for a degenerate FEG.
(b)–(d) Results obtained with the present approach (solid red lines) and with the AB theory (solid circles). The dashed line in these panels
shows the WPM results for T = 0 only to illustrate the effect of the temperature with respect to these fixed values. The dotted curve shows the
asymptotic limit given by the Bethe formula (which is independent of the temperature).

the electrons that have been thermally liberated from the target
ion. All the calculations will be made using the unified scheme
(UWPM) described before.

We will consider two alternative scenarios: First, we will
assume particular ionization states where electrons are pro-
gressively removed from the atomic shells, leaving a target
ion with charge Q and a plasma containing a number N = Q
of electrons per atom. Second, we will perform more compre-
hensive calculations to illustrate in a realistic way the effects
of target ionization in conditions of thermal equilibrium.

V. UWPM CALCULATIONS

A. Stopping power for cold targets

Since the main energy-loss parameter, and also the most
studied one both experimentally and theoretically, is the stop-
ping power, the analysis here also refers to this quantity.

In Fig. 2, we show a comparison between the experimental
results for the stopping cross sections for protons interacting
with a cold Si solid target as a function of the projectile
velocity [51] and the results calculated with our model. The
contribution of the Si valence electrons (represented as a
free-electron gas with rs = 2.01) dominates the results for

lower and intermediate velocities, while inner-shell contribu-
tions become increasingly relevant for intermediate and high

FIG. 2. Stopping cross section for protons on a cold Si target as
a function of the projectile velocity. Dashed blue line: WPM; full red
line: EWPM; dotted red line: FEG model with rs = 2.01. Symbols:
Experimental data extracted from [51].
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FIG. 3. Stopping cross section for protons on a cold C target
as a function of the projectile velocity. Symbols: Experimental data
extracted from [51].

velocities. As it may be seen, our model provides a good
description of the stopping power on this extended energy
range.

Additional calculations with this model are shown in Fig. 3
for a C target. As in the case of Si, the dominant contribution
to the stopping is due to valence electrons, described as a free-
electron gas with rs = 1.66. In this case, the contribution of
the only inner shell (i.e., the carbon K shell) is very small, so
that no appreciable differences between the WPM and EWPM
results are observed, and the FEG contribution nearly coincide
with the total values. For low velocities, the theoretical results
may still be improved by nonlinear calculations to take into
account strong-interaction effects, as discussed in Ref. [43].

FIG. 4. Stopping cross section for protons on a cold Fe target as a
function of the projectile velocity. Dash-dot-dotted blue line: WPM-1
calculated with the original parameters. Dashed blue line: WPM-2
calculated with a modified parameter for d electrons as described in
the text. Dash-dotted red line: EWPM-1 model calculated with the
original parameters. Solid red line: EWPM-2 model calculated with
a modified parameter for d electrons as described in the text. Dotted
red line: FEG with rs = 2.12. Symbols: Experimental data extracted
from [51].

Finally, our results for a Fe target are shown in Fig. 4.
Here, we observe more significant differences between the
WPM (blue line) and EWPM models, as a result of binding
effects in the excitation of inner-shell electrons. In this case,
we can make some additional considerations. As it has been
discussed in the cases of Ag and Au in [43], d shells in
transition metals show wider speed distributions than those
obtained by Hartree-Fock calculations corresponding to free
atoms. Consequently, EWPM coefficients corresponding to d-
shell states should be modified. Contrarily to the previous two
targets Si and C, as well as for standard metals such as Al, not
containing d electrons, in the case of Fe and other transition
metals the contribution of d electrons is dominant [43]. When
this contribution increases, it produces an increment in the
maximum of the stopping curve. This effect is shown in Fig. 4,
which shows an improvement in the theoretical values around
the maximum when we enhance the 3d Gaussian wave packet
by modifying the corresponding coefficient from 0.963 (the
value for free atoms [42]) to 0.8. On the other hand, significant
discrepancies in the experimental values in the region of the
stopping power maximum are observed in the three cases
analyzed here (C, Si, and Fe). No clear consensus exists on
which values should be considered more accurate.

B. Density and temperature changes

1. Partial analysis

The behavior of atoms or ions in plasmas can be charac-
terized by the values of some relevant parameters, such as the
ionization degree and the electronic density and temperature.
In order to understand the individual role of these parameters
in our model, we started analyzing the influence of a selected
parameter on the calculated values while keeping constant the
others. After this partial analysis, we considered a full descrip-
tion including all the simultaneous effects of target ionization
and density and temperature changes. The tools used for the
complete description include the use of the EWPM method
applied to bound states, with consideration of the binding
energy of each inner shell (which depends on the degree of
ionization), and the use of the plasma model described in
Sec. IV to take into account the contribution of the ionized
electrons that form the surrounding plasma. This is what we
call the unified model proposed in this work.

First we focus our analysis on the degree of ionization,
defined as i = N/Z , where N is the number of ionized elec-
trons and Z is the target atomic number, assuming in this
case a cold target, without taking into account the effects
of temperature or density variations. In Fig. 5, we show the
stopping cross sections for the case of protons traversing cold
targets of C, Si, and Fe, for different degrees of ionization. In
this particular analysis, we have represented the free electrons
as a degenerate electron gas, with T = 0, and characterized by
Wigner-Seitz radii rs appropriate to each case. To calculate rs

as a function of the degree of ionization, we have rescaled the
rs values corresponding to a solid target by a factor (4/N )1/3

for C and Si, and (2/N )1/3 for Fe. Thus, for instance, in the
case of Si, we used rs = 2.01 for N = 4, rs = 1.60 for N = 8,
rs = 1.39 for N = 12, and rs = 1.32 for N = 14. Although
these N values are in this case arbitrary, the rationale of
this example is in correspondence with the phenomenon of
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(a)

(b)

(c)

FIG. 5. Stopping cross section for protons on three different cold
targets for several fixed degrees of ionization N as a function of the
projectile velocity: (a) Si, (b) C, and (c) Fe.

pressure ionization which occurs in cold matter subject to
high pressures [52,53]. This phenomenon is of relevance in
inertial-fusion studies [54] as well as in high-density stellar
media [55]. As indicated before, the values of the inner-shell
binding energies were readjusted according to the degree of
ionization. The higher the degree of ionization, the lower the
number of the remaining bound electrons, and the higher their
binding energies. This effect is shown in detail in Fig. 6 for the
case of Si, using the data obtained from NIST tabulations [56].
Consequently, the contribution of inner shells to the stopping
decreases, while the contribution of the free electrons in the
plasma increases. As a result of this, we find that the total
stopping cross section increases with the degree of ionization
as a consequence of the increment in the number of free
electrons and the dominant free-electron contribution to the
energy-loss process.

The case of Fe in Fig. 5 shows, however, a nontrivial behav-
ior since the curves for N = 2 and N = 8 almost coincide. To
understand this particular case, we show in Fig. 7 the separate
contributions of the FEG and of the corresponding inner shells
for the cases N = 2, 8, and 14 (more deeply bound shells
are not shown since their contribution is negligibly small).
Comparing the cases of N = 2 and N = 8, we observe a large
growth in the FEG contribution, but it is compensated by the
disappearance of the 3d contribution for N = 8. Simultane-
ously, we observe a significant decrease in the contribution of
the 3p shell, which is produced by the increase in its binding

FIG. 6. Silicon ionization energies for levels 1s, 2s, and 2p as a
function of the number of ionized electrons N, according to Ref. [56].

energy (values of I3p: 97.9 eV for N = 2, and 233.6 eV for
N = 8). A similar reduction effect (although less significant),
also produced by the increase of binding, occurs for the 3s
contribution. Finally, for N = 14, there is a further increase in
the FEG contribution (as the 3p shell contribution disappears),
which yields almost the whole SCS value.

A different situation is shown in Fig. 8, where we show
the total stopping cross section curves for a hot plasma for
three different temperatures and a fixed value of target ion-
ization, N = 4 for C and Si, and N = 2 for Fe. These values
correspond to the removal of all the valence electrons in each
target. Here we find a very fast decrease of the stopping with
temperature in the cases of C and Si, and a milder one for Fe.
This difference is due to the fact that C and Si have a smaller
number of electrons in inner shells and hence a much larger
contribution of valence or free electrons. This decrease with
temperature is in accord with the similar behavior observed in
the results for a pure plasma in Fig. 1 when kBT > EF . On the
other hand, in the case of Fe, the contribution of inner shells
is dominant, as may be observed in Fig. 4, and so in this case
the total stopping power is less sensitive to changes in T .

Another relevant question of great interest for ICF or astro-
physical studies is the effect of changes in the target density.
In the case of ICF, the target is subject to the effects of inter-
nal compression and external ablation so that density values
higher and lower than the normal ones are of interest. On the
other hand, the interior of stars provides conditions of extreme
densities and temperatures, and may include elements such
as C, Si, and Fe, in various stages of the stellar evolution,
as described in Sec. I. One of the advantages of the present
formulation is that it may readily account for arbitrary (non-
relativistic) changes of the target density. To illustrate this
point, we performed some additional calculations where we
increased or decreased the density of the medium by arbitrary
values.

In Fig. 9, we show the stopping cross section for protons
impinging on a Si target for a fixed degree of ionization, but
for different densities and temperatures. Here three tempera-
tures were considered: T = 30, T = 60, and T = 90 eV; and
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FIG. 7. Stopping cross-section contributions of levels 3s, 3p, and
3d of Fe, as a function of the projectile velocity, for T = 0 and for
different numbers of ionized electrons N. Full thick line: total; full
thin red line: FEG; dash-dotted line (only for N = 2): 3d; dashed
line (for N = 2 and 8): 3p; dotted line: 3s.

to evaluate the effects of changes in the target density, we
considered three density values: ρ0/8, ρ0, and 8ρ0, taking as a
value of reference the normal density of Si, ρ0 = 2.33 g/cm3.

Here we observe a seemingly contradictory behavior: the
values for the target with increased density (blue lines) are
smaller than those of the normal density (black lines), while
the opposite is observed for the target with decreased density
(red lines). However, if one analyzes the stopping power val-
ues, dE/dx, the behavior is the expected one: the higher the
density, the larger the stopping power. This effect is partic-
ularly important at low energies and it has a simple but not
obvious explanation: At low energies, the effect of screening
by the free electrons is very important so that the stopping
power S increases less than linearly with the density. As a
result of this, S scales with ∼n ln(kBT/n1/2), i.e., less than lin-
early with n, so that the stopping cross section, SCS = S/na =
4S/n in this case, decreases with n. (In the case of cold targets,
one has to also consider the restrictions imposed by the Pauli
principle which produces a similar effect [57].) In the opposite
limit of high energies, S scales with ∼n ln(v2/n1/2) and, in
this case, the stopping cross section SCS = S/na converges
to rather similar values when the logarithmic term becomes
large [i.e., when ln(v2/n1/2) 
 1]. For still further details,

(a)

(b)

(c)

FIG. 8. Stopping cross sections for different temperatures and a
fixed value of target ionized electrons N as a function of the projectile
velocity: (a) Si, (b) C, and (c) Fe.

the argument v2/n1/2 of the logarithm also explains why the
curves for lower density (red lines) remain over the curves for
higher density (blue lines) in Fig. 8.

To see the connection with the screening effect, we
may recall that the logarithmic term depends in a gen-
eral way on the ratio λs/λqm, where λs is a screening
length and λqm is a typical quantum mechanical length.
As described in Ref. [58], at low energies the screen-
ing length in a classical plasma (θ 
 1) is the Debye
length λD = [(kBT/m)1/2/ωp] and λqm = h̄/mvT , with ωp =
(4πne2/m)1/2 and vT = (kBT/m)1/2, whereas at high en-
ergies, the screening weakens and λD is replaced by the
adiabatic length λad = v/ωp, while λqm is the de Broglie
length h̄/mv. It may be shown that these considerations ex-
plain very well the logarithmic behavior described before.

2. Calculations for thermal equilibrium

The final step in our analysis is to take into account, in
a more complete way, the effects of the temperature on the
particle-target interaction using an appropriate description of
the target ionization in conditions of thermal equilibrium. In
the previous examples, we have treated all parameters, i.e.,
density, temperature, and ionization degree, as if they were
independent, but a realistic calculation should take into ac-
count that the degree of ionization increases with temperature,
also considering the population distribution of charge states
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FIG. 9. Stopping cross section for protons on a Si target with
a fixed degree of ionization N = 4 for different temperatures and
densities, as a function of the projectile velocity. Black lines: normal
density ρ0; thick blue lines: 8ρ0; thin red lines: ρ0/8. Full lines:
T = 30 eV; dashed lines: T = 60 eV; dotted lines: T = 90 eV.

for each temperature. To describe these conditions in a proper
way, we made use of the FLYCHK code [59], which is based
on the Saha’s equation [60], to calculate the population of the
various atomic shells in conditions of thermal equilibrium at
a given temperature T .

For each ionization state, a number N of electrons is ex-
tracted from the atom and incorporated into the surrounding
plasma, so that its density increases with temperature. Hence,
the free-electron contribution gradually becomes the domi-
nant contribution to the stopping power as the temperature
increases.

To illustrate these effects, here we consider the case of a Si
target. The average number of electrons 〈N〉 transferred to the
plasma obtained from the FLYCHK code is shown in Fig. 10(a),
as a function of temperature T . Additionally, for each value of
〈N〉, the code delivers a distribution of charge-state values N .
Using these values, we calculated the partial stopping power
for each charge state and, finally, we obtained the statistical
average of the stopping power for each temperature. The final
results are the stopping cross sections shown in Fig. 10(b).

Figures 8 and 10 show some similarities in the tempera-
ture dependence; however, while Fig. 8 shows only particular
cases, Fig. 10 shows the complete average corresponding to
conditions of thermal equilibrium.

There is another aspect of interest that we may observe in
Fig. 10: while the SCS values decrease in the low-velocity
range, the opposite behavior is observed for v larger than
about 5 a.u. This enhancement of the stopping power, pro-
duced by the thermal liberation of electrons by the target
atoms, is in qualitative agreement with the experimental find-
ings of Ref. [61], where significant enhancement of the energy
deposition by very intense ion beams was observed. An addi-
tional effect that may contribute to a further enhancement of
the energy loss in the experiment is the collisional ionization
of the target due to the high intensity of the beam; this will

FIG. 10. (a) Mean ionization charge 〈N〉 as a function of temper-
ature for a Si target with normal solid-state density according to the
FLYCHK code [59]. (b) Stopping cross section for protons traversing
a Si target for different temperatures as a function of the projectile
velocity.

liberate additional electrons and will further increase the free-
electron stopping power.

3. Application to stellar interiors

A second example, appropriate to conditions in the interior
of aged stars in different moments of their evolution [25–27],
is illustrated in Fig. 11. In this figure, we show results for the
stopping cross sections (left scale) and stopping power (right
scale) for protons in C, Si, and Fe, under conditions of very
high densities and temperatures; in this case, for a density of
2.105 g/cm3 and two temperatures: 45 and 86 keV (5.2 × 108

and 109 K, respectively). In these cases, the maximum of the
stopping is displaced to much larger velocities, in the range
of 70 to 90 a.u. Hence, due to the high speeds shown here,
we must consider relativistic corrections. A full treatment of
relativistic effects in the stopping power was made by Bethe,
who derived the high-energy result [62–64],

S(v, ωp) = B

v2

[
ln

(
2mv2γ 2

h̄ωp

)
− v2

c2

]
, (20)

where B = 4πnZ2
pe4/m and γ (v) = 1/

√
1 − v2/c2. This

may be compared with the corresponding nonrelativistic
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FIG. 11. Stopping cross section for protons traversing dense stel-
lar regions with high temperatures, T1 = 45 and T2 = 86 keV, as a
function of the particle velocity. Thin-solid and thin-dashed lines:
relativistic corrections. Dash-dotted lines: analytical low-energy ap-
proximation of Eq. (23).

expression

Snr (v, ωp) = B

v2
ln

(
2mv2

h̄ωp

)
. (21)

A compact form of the relativistic correction is given by
the ratio of these two expressions, namely,

Qre(v, ωp) = S(v, ωp)

Snr (v, ωp)
. (22)

Since the relativistic effect is important only in the high-
energy limit, we apply this correction by multiplying the
stopping values calculated nonrelativistically by the correc-
tion factor Qre. The departure of the relativistic stopping from
the nonrelativistic one is illustrated in Fig. 11. We can see
that the relativistic effects (curves shown by the dashed lines)
start to be relevant for speeds larger that 80 a.u., although
the magnitude of these corrections is not very large in the
range that is explored (a maximum value of 20 percent at
v = 120 a.u.).

On the other hand, the decrease of the stopping power
values with temperatures in the low-velocity range, which is
very notorious in the cases of highly ionized targets, such
as in Figs. 10 and 11, may be explained very well using the
approximation of Eq. (8) in the stopping integral of Eq. (15).
This yields the following result for the low-energy behavior:

S = 4

3

(2πm)1/2

(kBT )3/2
Z2

pe4nv

[
ln

(
kBT

h̄ωp

)
+ 1

4

]
. (23)

(a)

(b)

(c)

FIG. 12. Stopping power, range (R), and inverse mean free path
(IMFP) for protons, deuterons, and muons moving within solar re-
gions, for densities and temperatures corresponding to the sun center
(ne = 8.4 × 1025 cm−3, T1 = 1.38 keV), as a function of the projec-
tile velocity.

This is the quantum mechanical version, obtained in
Ref. [65], of a similar expression obtained previously by
Spitzer [66] for classical plasmas. The decrease of S with T is
basically a consequence of the dependence 1/T 3/2 in the main
term of this expression.

The straight lines in the lower-velocity range shown in
Fig. 11 are the predictions of Eq. (23), calculated with the
effective temperature values of Eq. (19). As may be observed,
this “low-velocity” approximation yields excellent results for
a very extended range of velocities. This shows that the valid-
ity range of this approximation is actually given by v < vth,
where vth = (kBT/m) is a measure of the thermal speed of
the plasma electrons. In the present cases, vth = 40.7 and
56.2 a.u., for the temperatures of 45 and 86 keV of these
calculations.

4. The case of solar interior

In order to further illustrate the wide range of applicability
of the present method, we now consider the conditions in
the region of the sun center, characterized by temperatures
and densities of 16 × 106 K and 160 g/cm3 respectively, and
consisting of ≈75% hydrogen and 25% helium. This yields a
total electron density of 8.4 × 1025 cm−3.

In Fig. 12(a), we show the stopping power for protons,
deuterons, and muons in the region of the sun’s core. When
plotted as a function of velocity, the stopping power is
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the same for all these particles (since the isotopic effect is
quite small) [67]. The maximum value of the energy loss is
∼80 eV/Å for velocities between 10 and 15 a.u. We may
compare these values with more common cases of solids, such
as Al or Si, where the maximum stopping values are of the
order of 12–14 eV/Å for v ∼ 1.3–2.0 a.u. There is a physical
explanation for the shift in the stopping power maximum: this
maximum occurs for velocities slightly larger than the thermal
speed of electrons in the solar plasma (of the order of 10 a.u.),
and of the Fermi speed in the case of cold solids (of the order
of 1 a.u. for Al and Si).

The two lines shown in Fig. 12(a), for the low- and high-
velocity ranges, are the analytical expressions of Eq. (23)
(low-v approximation) and of the Bethe formula given by
Eq. (21) (high-v approximation). As in the case of Fig. 11,
we find that the low-velocity expression of Eq. (23) yields
an excellent approximation. Together with the Bethe formula,
both approximations very precisely explain the behavior of the
stopping power in both limits.

Finally, another relevant quantity to characterize the
energy-loss process is the distance traveled by the particles un-
til they thermalize. To illustrate this, we show in Fig. 12(b) the
penetration range of each of these particles, which is given by

R(E ) =
∫ E

Eth

dE ′

S(E ′)
, (24)

where Eth = (3/2)kBT . This quantity shows a significant
mass dependence (proportionality with particle mass), which
produces the large split of proton, deuteron, and muon ranges
shown in Fig. 12(b). These results may be scaled to other
light bare ions, such as He3 or He4, by a factor M/Z2

p , with
M the mass and Zp the atomic number of the particle. It may
be parenthetically noted that the minimum value Eth in this
integral might as well be taken as zero without any noticeable
change in the range values (because of the comparatively
large particle energies considered here).

5. Inverse mean free path

As a final example, we now consider the calculation of
the mean free path of particles with the present method.
This quantity is also of central interest for studies of en-
ergy transport in matter under various conditions, such as in
all the systems considered before. Since the main aspects
of the present approach have already been illustrated, here
we will restrict our analysis to the case of charged particles
moving in the interior of the sun, particularly in the region
around the sun center, using the parameters specified before.

From the general form of Eq. (14), the inverse mean free
path (IMFP) may be calculated by the integral expression,

�−1 = Q0 = 2

π h̄

(Zpe

v

)2 ∫ ∞

0

dk

k

∫ kv

0
Im

[ −1

ε̃(k, ω)

]
dω.

(25)
This quantity is shown in Fig. 12(c). The dashed line in

this figure shows the asymptotic limit, given by a Bethe-like
formula [49],

�−1 ∼= (Zpe)2ωp

h̄v2
ln

(α0v

vF

)
, (26)

with α0 = 1.5 and Zp = 1.

In this case (heavy particle), the IMFP has a maximum
value at v = 0 [49], corresponding to a very short mean free
path of � ∼= 8 Å. The smallness of this value in comparison
with the thermalization range R indicates that the typical en-
ergy transfer in each interaction, given by �S, is much smaller
than the kinetic energy of the external particle. Thus, for
instance, for v = 10 a.u. (energy of 2.5 MeV for protons), the
typical energy loss per electronic interaction is �S ∼= 750 eV;
therefore, the slowing down of the projectile requires a very
large number of interactions.

With this final example, we finish this set of calculations
that was made to illustrate the application of the method to
various systems subject to quite different physical conditions.

VI. CONCLUSIONS

Here we presented a unified approach to describe the
interaction of charged particles with matter that applies to ar-
bitrary values of densities, temperatures, and ionization state,
covering the whole nonrelativistic range of densities and tem-
peratures.

The model describes, with the same unified formulation,
all the relevant target cases: (i) conduction or valence elec-
trons in metals or insulators, (ii) bound electrons in atomic
shells (solids and gases), and (iii) free electrons in plasmas.
The method is especially appropriate to describe processes
in neutral or ionized matter subject to extreme conditions of
densities and temperatures.

We analyzed several cases of interest for fusion or astro-
physical studies, considering in particular targets of special
interest such as C, Si, and Fe, to illustrate the general appli-
cability of the approach. The available experimental results
for cold targets serve as a basic test of the approach, showing
good agreement with the theoretical calculations. Moreover,
the calculations yield an enhancement in the energy loss of
swift ions in heated targets due to an increase in the number
of free electrons, an effect that was experimentally observed.

The most significant advantage of the unified approach
is, however, in the study of processes in very hot and dense
media. In this study, we first illustrated the applicability of
the theoretical scheme considering several arbitrary values
of ionization states, densities, and temperatures, and, second,
we applied the approach to realistic cases of thermal equilib-
rium. It should be noticed that the approach may be applied
as well to arbitrary states of systems away from thermal
equilibrium.

In summary, the method readily applies to any solid ele-
ment in normal conditions, providing fairly good agreement
with experiments; however, the possibility of including ion-
ized plasmas and systems with arbitrary ionization states
makes this approach most useful for applications to processes
in ionized matter under extreme conditions of densities and
temperatures. There is no other general method that could be
applied in a straightforward way and with a unified formula-
tion to the universe of cases indicated here.
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