
PHYSICAL REVIEW A 99, 032702 (2019)

Theoretical models to calculate stopping and ionization ratios of H2
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In this work we study the vicinage effects that arise in the interaction of molecular projectiles with solids,
considering, in particular, the effects produced by the excitation of inner shells. For this purpose, we use two
different approaches. On one side we extend the use of the semiclassical impact-parameter model for the
excitation of atomic shells, considering quantum corrections and the role of target screening in the vicinage
effects. On the other hand, we adapt our extended wave-packet model, developed in a previous work to
the calculation of stopping ratios and ionization cross sections for correlated ions. This model introduces
modifications to the wave-packet method originally proposed by Kaneko, using the Levine and Louie technique
to take into account the energy gaps corresponding to the different atomic levels of the target. Finally, we add
the contribution of valence electrons calculated with the Lindhard free-electron-gas model and compare with
experimental results of vicinage effects in the energy-loss and ionization cross sections for hydrogen molecules
interacting with C, Al, Si, Al2O3, and SiO2 targets.
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I. INTRODUCTION

The interaction of swift molecules with solids has been
a subject of great interest and activity during the last
decades [1–10]. The first experimental evidence of an en-
hancement of the stopping power of molecular projectiles
due to a correlation effect between the particles that compose
the molecular projectile, the so-called vicinage effect, was
observed by Brandt et al. [11]. Many experimental [12–27]
and theoretical works [1–10,28–30] have been published to
date studying different aspects of this phenomenon, such as
the influences of the projectile charge, wake effects, elastic
collision cascades, molecular explosion, and related effects.
Density-functional theory and nonlinear methods for low
velocities [2–4] as well as linear methods for intermediate
and high energies [5–8,28–30] were developed to calculate
the vicinage effect. To characterize this phenomenon, it is
useful to define the stopping ratio R as the quotient between
the energy loss of the molecular projectiles and the sum
of the energy losses of the separated atomic components.
One important aspect of the vicinage effect arises from the
dependence of the internuclear distance with the dwell time,
or in practice, with the target thickness. As R depends on the
internuclear distance, for thick targets the average stopping
ratio diminishes, since the distances between the particles
increase. Another aspect is that for low energies nonlinear
phenomena become relevant and, moreover, the projectiles
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may become neutral and so the charge state effect also be-
comes important.

Most of the theoretical descriptions of the vicinage effect
have been made using the dielectric formulation. This is a
natural way to represent the electrodynamical interactions
in a dense medium and is particularly useful to consider
the interaction with conduction or valence-band electrons.
An interesting dielectric model developed in the 1990s by
Kaneko [30–33] extends the possibilities of the dielectric
approach to evaluate the contributions of inner shells, in this
way opening the possibility of more comprehensive stopping
power calculations. The so-called wave-packet model (WPM)
of Kaneko, based on the use of Gaussian distributions of elec-
trons in momentum space, provides a significant advantage in
terms of analyticity, as it yields closed analytical expressions
for the dielectric function, with similar properties to those
of the Lindhard dielectric model (LDM) corresponding to
a free-electron gas [34] but using more appropriate velocity
distributions for each atomic shell.

However, one of the restrictions of both LDM and WPM
is the absence of energy gaps or binding effects, so that
electrons can be excited as free particles and may be detached
from the condensed state without spending the minimum
energy corresponding to the band gaps in semiconductors or
insulators (in the LDM) or the ionization energy in atomic
shells (in the WPM). These binding effects have been taken
into account in previous approaches [35,36] by introducing
a cutoff in the energies into the definition of the dielectric
function. In a recent work [37] we developed an extension
of the WPM, introducing the energy binding effects into the
corresponding dielectric function to evaluate the influence of
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the energy gap for each shell. The result of this is the so-called
extended wave-packet model (EWPM).

In this paper we study the vicinage effects in the interaction
of molecular projectiles with solids, considering the effects
produced by the excitation of inner shells. For this purpose, we
will use two different approaches and will particularly study
the stopping ratio and the ionization cross-section ratio at
intermediate and high energies. As a case of particular interest
we will consider H2

+ projectiles with typical internuclear
distances to compare with experiments. First we extend the
classical electrodynamics atomic-oscillator model (AOM) of
Bohr to a semiclassical impact-parameter model (SIPM) for
the case of correlated ions. To perform this extension we
consider short-distance corrections and screening effects, due
to the free electrons in the case of metals or last-shell electrons
in the case of insulators and semiconductors, by introduc-
ing a Yukawa interaction potential. In addition, we use a
quantum-mechanical approach for the bound electrons of the
target, keeping the classical representation of the projectile
by the impact-parameter method to calculate the ionization
cross-section (ICS) ratios. Secondly, we apply the EWPM
to calculate the influence of inner-shell contributions to the
vicinage effects on the stopping power and the ionization
cross-section ratio. Finally, we add the contribution of the
valence electrons to the energy loss of correlated ions, using
Lindhard’s dielectric model [28], and we compare the results
of the different models with the experiments.

The present work is organized as follows: In Sec. II we
describe the classical model and its semiclassical extension.
In Sec. III we develop the quantum-mechanical impact-
parameter approach to calculate the ICS ratios and thus com-
plete the semiclassical calculations. In Sec. IV we describe
the dielectric approach used in this study and its extension
considering the binding energies of the atomic shells. In
Sec. V we present the expressions for the energy loss and the
ionization cross section. In Sec. VI we show the results of the
calculations of the stopping ratios and ionization cross-section
ratios for H2

+ molecules comparing the SIPM, WPM, and
EWPM results with the experiments. The conclusions are
summarized in Sec. VII.

II. CLASSICAL AND SEMICLASSICAL DESCRIPTION

To evaluate the contribution of the inner shells to the
stopping of bare projectiles by atoms, Bohr proposed a clas-
sical electrodynamics model (or atomic-oscillator model). In
this model, the bound electrons of the target oscillate with
frequency ω = ω0, with ω0 associated to the binding energy
of the atomic shell [38–40]. This approach is very useful to
calculate the stopping when the projectile passes far apart
from the target but has difficulties in representing close in-
teractions [39,40]. Hence, a correction to this model is intro-
duced by considering both classical and quantum-mechanical
effects.

Let us consider a pair of ions with charges Z1e and Z2e,
separated by a distance r0, moving with velocity v, with
trajectories parallel to the z axis. We assume the target atom
is fixed at the origin of the coordinate system and define the
impact parameters b1 and b2 corresponding to the trajectories
of each ion (Fig. 1). Considering the position of the target

FIG. 1. Diatomic projectile moving along z direction with veloc-
ity v and impact parameters b1 and b2, respectively. Target is placed
at the origin of the coordinate system

atom and the trajectories of each ion, we define a set of
axis on the plane perpendicular to z: (x, y) for ion Z1 and
(x′, y′) for ion Z2, so that the target atom is at a distance
b1 (along the y axis) with respect to the trajectory of ion Z1

and at a distance b2 (along the y′ axis) with respect to the
trajectory of ion Z2. Hence, the positions of each ion are given
by (x1, y1, z1) = (0, b1, vt ) and (x′

2, y′
2, z′

2) = (0, b2, z0 + vt ),
with z0 = r0cos(θ0), where θ0 and ϕ0 are the polar and az-
imuthal angles of the internuclear vector −→r 0 (Fig. 1). Here
z1 = vt and z2 = z′

2 = z0 + vt represent the positions of the
first and second ion, respectively, along the trajectory axis z.

The time-frequency Fourier transforms of the electric fields
produced by each ion on the position of the target atom are
given by{

E
(1)

z (ω0)

E
(1)

y (ω0)

}
= Z1e√

2π

∫ ∞

−∞
dt

eiω0t[
b2

1 + (vt )2
]3/2

{
vt
b1

}
, (1)

{
E

(2)

z (ω0)

E
(2)

y′ (ω0)

}
= Z2e√

2π

∫ ∞

−∞
dt

eiω0t[
b2

2 + (vt + z0)2
]3/2

{
z0 + vt

b2

}
.

(2)

We note that these are the only no null components of the
field of each ion (i.e., the respective x and x′ components of
ions 1 and 2 are zero).

These integrals can be solved analytically, obtaining{
E

(1)

z (ω0)

E
(1)

y (ω0)

}
= Z1e√

2π

2ω0γ1

v2

{
iK0

(
ω0b1

v

)
K1

(
ω0b1

v

)}
, (3)

{
E

(2)

z′ (ω0)

E
(2)

y′ (ω0)

}
= Z2e√

2π

2ω0γ2

v2

{
iK0

(
ω0b2

v

)
K1

(
ω0b2

v

)}
e−iω0z0/v, (4)

where we have introduced a correction factor γi =
bi/

√
bi + ( Zi

v2 )2 + ( 1
2v

)2 (in atomic units) to extend the valid-
ity of the results to close collisions. The explanation of this
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correction factor is based on the discussion given in Ref. [39],
considering a classical Rutherford radius Zie2/mv2, and a
quantum diffraction-limit parameter h̄/2mv. It may be shown
that with this correction the energy loss of each ion (after
integrating on impact parameters) agrees well with the Bohr-
Bethe-Bloch limit for the stopping power at high velocities,
which for this model yields the expression [39]∣∣∣∣dE

dz

∣∣∣∣ = 4πn0Z2e4

mv2
ξK0(ξ )K1(ξ ), (5)

with ξ = ω0bmin(v)/v and bmin(v) =
√

( Zi
v2 )2 + ( 1

2v
)2, so that

for ξ � 1, K0(ξ ) ∼ ln(1.123/ξ ), K1(ξ ) ∼ 1/ξ, and the
function ξK0(ξ )K1(ξ ) reproduces the Bloch behavior for the
stopping power in all its limits.

The energy transfer to the bound electron is given, in terms
of these fields, by [39]

�E (b1, b2, z0, v) = πe2

m
|E (ω0)|2

= πe2

m

[∣∣E (1)

z (ω0) + E
(2)

z (ω0)
∣∣2

+ ∣∣−→E (1)

y (ω0) + −→
E

(2)

y′ (ω0)
∣∣2]

. (6)

Notice that the z components of the fields can be summed
algebraically since the z and z′ axes coincide, while the y and
y′ components must be summed vectorially since the axes
y and y′ are not collinear. To evaluate the interference term−→
E

(1)

y · −→
E

(2)∗
y′ we must consider the angle δ(θ0, ϕ0) between

both axes, which is given by (cf. Fig. 1)

δ(θ0, ϕ0) = arccos
b1 + ρ0 sin(ϕ0)

b2(θ0, ϕ0)
, (7)

where ρ0 = r0 sin(θ0) is the projection of r0 on the plane
perpendicular to the ion trajectory. Another relevant relation
is b2(θ0, ϕ0) =

√
ξ 2 + (b1 + η)2, were ξ = r0 sin(θ0) cos(ϕ0)

and η = r0 sin(θ0) sin(ϕ0) are the x and y components of ρ0.

The previous expression of �E contains the energy loss of
two independent ions:

�Eindep =πe2

m

[∣∣E (1)

z (ω0)
∣∣2 + ∣∣E (1)

y (ω0)
∣∣2

+ ∣∣E (2)

z (ω0)
∣∣2 + ∣∣E (2)

y′ (ω0)
∣∣2]

(8)

=2e4ω2
0

mv4

{
Z2

1 γ 2
1

[
K2

0

(
ω0b1

v

)
+ K2

1

(
ω0b1

v

)]
+ Z2

2 γ 2
2

[
K2

0

(
ω0b2

v

)
+ K2

1

(
ω0b2

v

)]}
(9)

and the interference or vicinage term

�Einter = πe2

m
2 Re

{
E

(1)

z (ω0)E
(2)∗
z (ω0)

+ −→
E

(1)

y (ω0) · −→
E

(2)∗
y′ (ω0)

}
(10)

=4e4ω2
0

mv4
Z1Z2γ1γ2

[
K0

(
ω0b1

v

)
K0

(
ω0b2

v

)
+ K1

(
ω0b1

v

)
K1

(
ω0b2

v

)
cos(δ)

]
cos

(ω0z0

v

)
. (11)

These results are similar to those obtained by Fadanelli
et al. [21]. We now assume a random orientation of the
internuclear axis r0. Hence, in order to obtain the stopping
power of this cluster we must integrate the energy loss over
all the impact parameters b1 (of projectile Z1) and over all
the possible orientations (θ0, ϕ0) of −→r 0. This yields the
contribution of a given shell s in the form

dE (s)

dz
= 2πnaN (s)

e

∫ ∞

0
b1db1

∫ π

0

∫ 2π

0
�E (b1, b2, z0, v)

× G(b1, b2) sin(θ0)dθ0dϕ0, (12)

where na is the atomic density and N (s)
e is the number of

electrons in the considered shell. Notice that in this integral
the impact parameter b2 must be considered a function θ0

and ϕ0, according to the function b2(θ0, ϕ0) given before.
Additionally, to test possible localization effects we have
introduced here a function G(b1, b2) that will be used to make
a detailed analysis of the contributions of close and distant
collisions, as described in Sec. VI.

A. Screening effects

The previous expressions consider the electric fields of
particles moving in vacuum. One important aspect that was
not taken into account so far is the effect of the surrounding
medium, i.e., the screening effect produced by the rest of the
electrons. To account for this effect we replace the previous
Coulomb interaction by a Yukawa potential, namely,

φ(−→r , t ) = Z1e
e−αr1(t )

r1(t )
+ Z2e

e−αr1(t )

r1(t )
, (13)

where r1(t ) =
√

b2
1 + (vt )2, r2(t ) =

√
b2

2 + (vt + z0)2. Tak-
ing the gradient of this potential, we obtain the electric field
and then calculate the corresponding Fourier components by
the integrals{

E
(1)

z (ω0)

E
(1)

y (ω0)

}
= Z1e√

2π

∫ ∞

−∞
dt

[1 + αr1(t )]

r1(t )3

× eiω0t e−αr1(t ) ×
{
vt
b1

}
, (14)

{
E

(2)

z (ω0)

E
(2)

y′ (ω0)

}
= Z2e√

2π

∫ ∞

−∞
dt

[1 + αr2(t )]

r2(t )3

× eiω0t e−αr2(t ) ×
{

z0 + vt
b2

}
. (15)

Incidentally, these integrals may also be evaluated analyti-
cally as shown in [41]. In this case we obtain the results

E
(1)

z (ω0) = Z1e√
2π

2iω0γ1

v2
K0

(
ω1b1

v

)
, (16)

E
(1)

y (ω0) = Z1e√
2π

2ω1γ1

v2
K1

(
ω1b1

v

)
, (17)

E
(2)

z (ω0) = Z2e√
2π

2iω0γ2

v2
K0

(
ω1b2

v

)
e−iω0z0/v, (18)
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E
(2)

y′ (ω0) = Z2e√
2π

2ω1γ2

v2
K1

(
ω1b2

v

)
e−iω0z0/v, (19)

where ω1 =
√

ω2
0 + α2v2 and where the Bloch correction fac-

tors γi have also been included following the considerations of
the previous section. In the following applications we use the
dynamical screening approximation [42], α = ωp/v, where

ωp is the plasma frequency, so that ω1 =
√

ω2
0 + ω2

p, which
corresponds to the characteristic frequency of bound electrons
in dense media [43].

The rest of the calculations follow the lines of the pre-
vious ones, integrating over impact parameters and angular
variables as in Eq. (12) to obtain the stopping power values.
The corresponding stopping ratios are given by the quotient
between the stopping of the correlated protons and the stop-
ping of two independent protons, and provide the information
on the vicinage effects.

III. QUANTUM IMPACT-PARAMETER METHOD

The previous calculations may be complemented by a more
comprehensive semiclassical description where the projectiles
keep the classical trajectory properties while the atomic elec-
trons are treated in quantum-mechanical terms. In this case,
the probability of transition from an initial state |i〉 to a final
state | f 〉 may be calculated by first-order perturbation theory
as Ptot = |aif |2, where the amplitude aif is given by [44]

aif = 1

ih̄

∫ ∞

−∞
eiωt 〈 f |V (−→r , t )|i〉dt (20)

and where V (−→r , t ) is the interaction potential.
We consider first the case of particles interacting in vacuum

and include the screening effects later on. So in this first case
the interaction potential is

V0(−→r , t ) = −Z1e2

|−→r − −→r 1(t )| + −Z2e2

|−→r − −→r 2(t )| , (21)

where −→r 1(t ) and −→r 2(t ) are the corresponding trajectories of
both ions.

To make contact with the previous formulation, we now
expand this potential around the position of the target atom up

to dipole-order dipole terms,

V0(−→r , t ) ∼=
∑

i

[ −Zie2

|−→r i(t )| + Zie2

|−→r i(t )|3
−→r .−→r i(t )

]
= V0(0, t ) + e

−→
E (0, t ) · −→r , (22)

and replacing this in Eq. (20) we obtain

aif =
√

2π
e

ih̄
−→
E (ω0) · 〈 f |−→r |i〉. (23)

Considering the three components of 〈 f |−→r |i〉 with −→r =
(x, y, z), between initial |i〉 =|0〉 and final states | f 〉 [notation:
(x) f 0, (y) f 0, (z) f 0] and the expressions for the electric field,
Eqs. (1)–(4), we get the corresponding terms (notice that we
must also include here the x component of the electric field
generated by the ion Z2, which is calculated in a similar way
to the other components):

a(x)
f = (x) f 0

2e2ω0Z2γ2

ih̄v2

[
K1

(
ω0b2

v

)
e−iω0z0/v sin(δ)

]
, (24)

a(y)
f = (y) f 0

2e2ω0

ih̄v2

[
Z1γ1K1

(
ω0b1

v

)
+ Z2γ2K1

(
ω0b2

v

)
e−iω0z0/v cos(δ)

]
, (25)

a(z)
f = (z) f 0

2e2ω0

h̄v2

[
Z1γ1K0

(
ω0b1

v

)
+ Z2γ2K0

(
ω0b2

v

)
e−iω0z0/v

]
, (26)

and considering also conditions of isotropy of the initial
state [44], so that |(x) f 0|2 = |(y) f 0|2 = |(z) f 0|2, the total tran-
sition probability takes the form

Ptot = Pind + Pvic, (27)

where Pind and Pvic represent the transition probabilities for
independent ions and the vicinage term, respectively, given
by

Pind(b1, b2) =
(

2e2ω0

h̄v2

)2

|(x) f 0|2
{

Z2
1 γ 2

1

[
K2

0

(
ω0b1

v

)
+ K2

1

(
ω0b1

v

)]
+ Z2

2 γ 2
2

[
K2

0

(
ω0b2

v

)
+ K2

1

(
ω0b2

v

)]}
, (28)

Pvic(b1, b2) = 2Z1Z2

(
2e2ω0

h̄v2

)2

|(x) f 0|2γ1γ2 cos
(ω0z0

v

)[
K0

(
ω0b1

v

)
K0

(
ω0b2

v

)
+ K1

(
ω0b1

v

)
K1

(
ω0b2

v

)
cos(δ)

]
, (29)

δ being the angle between the axes y and y′.
We may now perform an angular average of these terms,

considering a random distribution of the internuclear axis
orientation −→r 0 by the integral

Ptot (b1) = 1

4π

∫ 2π

0
dφ0

∫ π

0
Ptot (b1, b2) sin(θ0)dθ0, (30)

with the following internal relations: z0 = r0 cos(θ0), ρ0 =
r0 sin(θ0), b2(θ0, ϕ0)=

√
ξ 2+(b1+η)2, where ξ=r0 sin(θ0)

cos(ϕ0) and η = r0 sin(θ0) sin(ϕ0), and the angle δ =
δ(θ0, ϕ0) given by Eq. (7). Finally, the inelastic mean-free path
(IMFP) and related cross section are obtained by integrating
over the remaining free parameter b1:

1

λ
= n0σ = 2πn0

∫
Ptot (b1)b1db1. (31)

It is of interest to show here a relationship between the
inverse mean-free path 1/λ and the stopping power derived
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earlier. For the sake of simplicity, we will consider only the
case of a single ion so that the excitation probability reduces
to

P(b) =
(

2e2ω0

h̄v2

)2

|(x) f 0|2Z2γ 2

[
K2

0

(
ω0b

v

)
+ K2

1

(
ω0b

v

)]
.

(32)

The integral over b1 may be performed analytically using
the well-known result [39]∫ ∞

bmin

[
K2

0

(
ω0b

v

)
+ K2

1

(
ω0b

v

)]
bdb =

(
v

ω0

)2

ξK0(ξ )K1(ξ ),

(33)
with ξ = ω0bmin/v. The parameter bmin represents here the
required correction to avoid the divergence of the Coulomb
interaction at very short distances so that the correction factor
γ here is no longer necessary. Hence, the IMFP becomes

1

λ
= 8πn0Z2e4

h̄2v2
|(x) f 0|2ξK0(ξ )K1(ξ ). (34)

We recall now the definition of the dipole oscillator
strength [44],

Ffi = 2m

h̄2 �Efi |(x)fi|2, (35)

so that Eq. (34) may be written in the form

�Efi

λ
= 4πZ2e4

mv2
Ffin0 ξK0(ξ )K1(ξ ), (36)

which shows a nice agreement with the corresponding expres-
sion for the stopping power, Eq. (5), provided that we identify
the factor neff = Ffin0 as the effective electron density accord-
ing to a classical picture of the interaction (and consistent with
the total oscillator strength sum rule:

∑
f Ffi = Zt ).

Finally, we must consider the screening effects, which may
be important in the case of solid targets. Using the results of
the screened fields, Eqs. (16)– (19), we obtain the expressions
for the probability terms Pscreen

ind and Pscreen
vic for inner-shell

excitation in a screening medium as follows:

Pscreen
ind (b1, b2) =

(
2e2ω0

h̄v2

)2

|(x) f 0|2
{

Z2
1 γ 2

1

[
K2

0

(
ω1b1

v

)
+

(
ω1

ω0

)2

K2
1

(
ω1b1

v

)]
+ Z2

2 γ 2
2

[
K2

0

(
ω1b2

v

)
+

(
ω1

ω0

)2

K2
1

(
ω1b2

v

)]}
,

(37)

Pscreen
vic (b1, b2) = 2Z1Z2

(
2e2ω0

h̄v2

)2

|(x) f 0|2γ1γ2 cos
(ω0z0

v

)[
K0

(
ω1b1

v

)
K0

(
ω1b2

v

)
+

(
ω1

ω0

)2

K1

(
ω1b1

v

)
K1

(
ω1b2

v

)
cos(δ)

]
.

(38)

The corresponding angular averages are given by Eq. (30), and
the final average over impact parameters are calculated as in
Eq. (31).

IV. KANEKO’S WAVE-PACKET MODEL

The main assumption of this model is the consideration of
Gaussian distributions for the electron velocities of a given
atomic shell, i.e., f (v) ∼ e−v2/v2

, where v is a characteristic
speed of the considered shell. The dielectric function for
these systems is described in terms of a characteristic wave
vector q, which is related to v by h̄q = mev. The value of
q is determined by the relation q = q1N1/3, where N is the
number of electrons in the shell and q1 is a shell parameter
whose value is determined from Hartree-Fock calculations of
electron velocity distributions using the results of previous
authors [45,46].

A. Dielectric function

The wave-packet model yields closed analytical expres-
sions for the real and imaginary parts of the dielectric function
ε(k, ω) = ε1(k, ω) + iε2(k, ω), where k and ω are the wave-
vector and frequency variables. The results for ε1 and ε2 may
be cast in a convenient way in terms of the dimensionless
variables u = ω/kv and z = k/2q as follows [31]:

ε1(u, z) = 1 + χ2

z2

1

8z
[F (u + z) − F (u − z)], (39)

ε2(u, z) = χ2

z2

π

8z

[
e−(u−z)2 − e−(u+z)2]

, (40)

where the parameter χ2 = e2/π h̄v.

The function F (x) is defined by

F (x) = √
π�(x) = √

π

∫ ∞

0
sin(tx)e−t2/4dt . (41)

An alternative expression for �(x) (more useful for numer-
ical calculations) is

�(x) = ϕ(
√

2x)

x
(42)

where

ϕ(x) = x
∫ x

0
e(t2−x2 )/2dt . (43)

B. Extended wave-packet model

As indicated before, one of the restrictions of the WPM is
the absence of energy gaps or binding effects, so that electrons
can be excited as if they were free particles and easily removed
from the atomic shells. In a recent work we extended the
WPM, introducing energy binding corrections in the dielectric
function, making use of a general method proposed by Levine
and Louie [35]. In our EWPM [37] the new dielectric function
ε̃ becomes, for ω > ω0,

ε̃1(k, ω) = ε1
(
k,

√
ω2 − ω2

0

)
, (44)
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ε̃2(k, ω) = ε2
(
k,

√
ω2 − ω2

0

)
, (45)

whereas for ω < ω0, ε̃2(k, ω) = 0, while ε̃1(k, ω) is obtained
from ε̃2(k, ω) using the Kramers-Kronig relations. All the
quantities calculated here are obtained from integrals in the
domain ω > ω0, where the values of ε̃1 and ε̃2 can be ex-
pressed analytically in terms of Eqs. (39)–(45). This dielectric
function also satisfies the sum rules as it does the Lindhard
dielectric function for a free-electron gas.

V. IONIZATION CROSS-SECTION AND
STOPPING RATIOS

We are here interested in calculating the first two moments
of the energy-loss distribution for H2

+ projectiles traversing
the foil in a random orientation. Applying the formalism
developed in [1,28] to each inner shell of the target atom, we
obtain the integrals (with n = 0, 1)

Qn = 2

π

( e

v

)2
h̄n−1

∫ ∞

0

dk

k

∫ kv

0
ωndω Im

[ −1

ε̃(k, ω)

]
×

[(
Z2

1 + Z2
2

) + f (k)2Z1Z2
sin(kr)

kr

]
, (46)

where Zi = 1 are the atomic numbers of the incident nucleons
and v is the molecular projectile velocity. This formula is
similar to the expression obtained in Ref. [28] for a free-
electron gas model (FEG) where the interference contribution
is given by I (r) = 2Z1Z2 sin(kr)/kr. However, we have in-
troduced here the EWPM dielectric function corresponding
to the target specific inner shell. We also add a “localiza-
tion effect” through the Gaussian “cutoff” function f (k) =
e−α k2

<v2> centered in zero and defined in terms of the average
square velocity of that shell. This form of cutoff function
was introduced by Kihara and Aono [47] as a method to
separate short-range and long-range collisions. In our case,
for molecules, the purpose of this function is to softly reduce
a possible overestimation of the interference contribution for
very close collisions of both protons (a low-probability event
as shown in Fig. 2). In fact, the results of the calculations for
the different targets showed negligible differences for all the
atomic levels in the values of the interference term when this
function was used, with the standard value α = 1.5 and with
the respective values of the square velocities. This agrees with
the results of SIPM calculations in Fig. 2, which shows negli-
gible contribution from the close-close interference terms.

This expression of Qn yields the values of the inverse
inelastic mean-free path and stopping power when n = 0, 1,
namely,

(i) inverse inelastic mean-free path: 1/λi = Q0

(ii) stopping power: S = |〈dE/dx〉| = Q1

Another quantity of interest is the ionization cross section,
which is directly related to the IMFP λi by

σi = 1

naλi
, (47)

where na is the atomic density.
The stopping and ionization cross-section ratios are given

by the quotient Qn/2Q(p)
n , where Q(p)

n is the ionization cross

FIG. 2. Stopping ratio of H2
+ in a Si target as a function of

the projectile energy, separated contributions from the 2p shell for
distant and close collisions.

section (n = 0) or the stopping (n = 1) of a bare proton.
Several examples of calculations for specific cases will be
considered in the next section.

VI. CALCULATIONS

A. Stopping power ratios

As a measure of the vicinage effect, we consider here the
average stopping power ratio R, calculated as

R = �E cluster

�E indep
= 1 + �E inter

�E indep
, (48)

where �E indep and �E inter are the complete angular and
impact-parameter averages of the stopping terms correspond-
ing to independent ions (�E indep) and the associated inter-
ference term (�E inter), respectively, and �E cluster is the total
stopping power average for the group of ions.

In Fig. 2 we perform a study of close and distant collisions,
with the SIPM separating those collisions with impact param-
eters lower than the average radium a2p corresponding to the
atomic 2p shell (with a2p = 0.535 for the case of Si [48])
from those collisions with impact parameters larger than a2p.

Here we have separated the different cases considering (a) that
both nucleons traverse the 2p electronic cloud (close-close),
(b) one of the nucleons crosses the 2p cloud while the other
passes outside it (close-distant and distant-close), and (c)
both nucleons pass outside the 2p cloud (distant-distant). To
perform this analysis we make use of the G(b1, b2) function in
Eq. (12), considering (a) G(b1, b2) = 1 if both b1 and b2 are
less than a2p, and 0 otherwise; (b) G(b1, b2) = 1 if one of the
bi is less than a2p while the other is larger, and 0 otherwise;
and (c) G(b1, b2) = 1 if both b1 and b2 are larger than a2p,

and 0 otherwise. We observe that the relative contribution to
the interference ratio from very close collisions (close-close)
is almost negligible. The contribution from distant-distant
collisions is similar to the contribution from close-distant col-
lisions at intermediate energies (∼100 keV), probably due to
the fact that the projectile energy is relatively low and requires
close collisions to excite that shell. For higher energies the
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FIG. 3. Separated contributions from inner shells to the stopping
ratio calculated with three different theoretical models: SIPM, WPM,
and EWPM. The results are displayed for H2

+ projectiles in C, Al
and Si targets as a function of the projectile energy.

contribution from distant collisions becomes dominant. The
same figure also shows the effect of screening produced by
the electrons of the target. This effect becomes important for
distant collisions, reducing its contribution to the stopping ra-
tio, as it is observed comparing the respective results (medium
vs vacuum).

In Fig. 3 we analyze the contribution of the most relevant
inner shells to the stopping ratio for a pair of correlated
protons traversing three different elements: (a) C, (b) Al, and
(c) Si. We include here WPM, EWPM, and SIPM calcula-
tions for a typical value of the internuclear distance r0. The
strong oscillatory behavior displayed by the SIPM results
at lower energies is a consequence of the oscillatory factor
exp(−iω0z0/v) in the interference between the fields of both
particles; the physical origin of this factor is the time delay
in the interaction of both ions with the same target atom.
By contrast, this oscillatory effect is not observed in the
WPM and EWPM representations, since in these cases the
interactions are fully delocalized (the position of the target
atom is undefined), and so the phase factor is replaced by
the angular average sin(kr)/kr [28], which produces much
weaker oscillations. This behavior almost disappears for the
EWPM model. Finally, the comparison between the WPM
and EWPM approaches shows that the binding energy ef-

FIG. 4. FEG and total contributions to the stopping ratio for
H2

+ in C, Al, and Si targets as a function of the projectile energy
for three different models: SIPM, WPM, and EWPM. Experimental
results: circles, Tape et al. [12]; triangles, squares, Eckardt et al. [13];
inverted triangles, Nyaiesh et al. [14]; full stars, Horino [15]; open
stars, Matsunami [19]; open triangles, Touchrift et al. [20]; dia-
monds, Koval et al. [4].

fect produces a significant reduction of the interference ef-
fect originally calculated with the WPM model for all the
shells.

Figure 4 shows Lindhard’s FEG and the total stopping
ratios for the same C, Al, and Si targets, together with several
experimental results. Calculations for significant values of
the internuclear distance r0 are displayed, in the range of
2–3.8 a.u., pertaining to the case of correlated protons with
increasing internuclear distances as they travel through a foil.
The typical range of experimental distances considered by
Brandt starts from an initial spread distribution at around
r0 = 2.44 a.u. and increases as the protons move through the
target foil [11], while Eckardt et al. [13] estimated that, for
H2 molecules traversing an Al target, the average internuclear
distances in the foil should be in the range 3 a.u. < r0 <

5 a.u. Our theoretical results with fixed internuclear distances
provide a rough estimation of the experiments, since the
internuclear distance increases as the ions move along the
trajectory due to several physical factors, such as electrostatic
repulsion and multiple scattering of the ions with the target
atoms, as well as interactions with the target electrons. The
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behavior of the curves seems to follow the asymptotic trend
of the experimental values. For C targets, the experiments
show a negative vicinage effect (R < 1) at low energies which
is not reproduced by our calculations. Moreover, there is a
very wide spread of experimental values at larger energies so
that no precise comparisons can be made. A distinct behavior
is observed for Al targets, where the experiments suggest a
range of distances of the order of 3.8 a.u. Unfortunately, no
experimental data is available for higher energies where the
theoretical results increase and split more significantly. At
very low energies possible charge effects and nonlinear effects
neglected by our theoretical calculations may cause visible
discrepancies with experimental results. On the other hand,
for a Si target WPM, EWPM, and SIPM results shows reason-
able estimations of the interference contribution considering
an internuclear distance in accord with Brandt’s assumption.
Here SIPM seems to better reproduce the trend to higher
energies, but again, the lack of experiments in this range
precludes more conclusive comparisons.

Still further evidences of vicinage effects for dicluster ions
have been obtained more recently from energy-loss experi-
ments on Al2O3 and SiO2 [4,26]. Here we can extend our
theoretical description to these compound materials, separat-
ing the valence and inner-shell contributions in the following
way. The excitation of valence electrons can be conveniently
modeled by an electron gas with an effective rs value and
with an energy gap Eg. From experiments of plasmon excita-
tion, both materials exhibit plasmon peaks with very similar
energies of nearly 25 eV [49], corresponding to rs = 1.56,
while the energy gap for these materials is about 8 eV in
both cases [50]. Formation of these valence bands involves
18 outer electrons in Al2O3 and 12 electrons in SiO2. Hence,
the residual inner shells involve the 1s, 2s, and 2p shells of
Al and Si, and the 1s and 2s shells of O. Assuming that the
inner shells maintain basically their atomic character, we can
calculate the corresponding stopping power by making use of
the Bragg rule, which for a molecule with structure AmBn is
given by [51]

�EBragg(AmBn) = m�E (A) + n�E (B) (49)

and so the total energy loss of each compound is finally
obtained as

�E = �EBragg
IS + �Eval(rs,Eg), (50)

where �EBragg
IS and �Eval(rs,Eg) are the energy losses corre-

sponding to the excitation of inner shells and valence elec-
trons, respectively.

In Fig. 5 we show the existing experimental results
from [4,26] together with our model calculations. Here the
experiments show (as in the case of C) a distinct behavior at
low energies, with negative vicinage effects (i.e., R < 1). Our
theoretical calculations cannot reproduce this behavior. In a
more recent work [52] this particular effect was quantitatively
explained by a more sophisticated set of calculations that
considered nonlinear effects in screening and energy transfer
by a dicluster ion. On the other hand, the behavior at larger
energies shows first a rapid growth followed by a more
moderate behavior. In this range of energies, our calculations
approach the experimental results. We also notice that the

FIG. 5. FEG and total contributions to the stopping ratio for H2
+

in Al2O3 and SiO2 targets as a function of the projectile energy
for two different models: WPM and EWPM. Experimental results:
squares, Koval et al. [4] for Al2O3 and Shubeita et al. [26] for SiO2.

pure-electron-gas calculations (indicated as Lindhard in the
figure), which do not consider inner shells, show a continuous
growth of R which could not be correct. Moreover, as in the
case of simple elements (Fig. 4), the question arises as to
what the behavior of R for larger energies should be. Our
calculations predict a declining effect. This is a subject open
to further experimental research.

Finally, as it was just noted, the theoretical results consider-
ing the contribution of inner shells produce a visible lowering
of the stopping ratios for higher energies with respect to those
calculated for a FEG. This is particularly clear for Al and Si
in Fig. 4 and for the two oxides in Fig. 5. The reason for
this effect is that the stopping ratio contains a combination
of independent and interference terms of the form

R = 1 + �E
FEG
inter + �E

IS
inter

�E
FEG
indep + �E

IS
indep

, (51)

where the upper scripts FEG and IS indicate the contributions
of the FEG and inner shells, respectively. So, when the energy
threshold for inner-shell contributions is overpassed, the terms

�E
IS
indep in the denominator exhibit fast growth [53] while

the corresponding interference terms �E
IS
inter have a more
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FIG. 6. Inner-shell contributions to the ionization ratio calculated
with three different theoretical models: SIPM, WPM, and EWPM.
The results are displayed for H2

+ projectiles in C, Al, and Si targets
as a function of the projectile energy. Experimental results: squares,
K shell for C and L shell for Si by Lurio and Andersen [22]; circles,
L shell by Ootuka et al. [23,24]; triangles, L shell by Yamazaki
et al. [25].

moderate behavior. The consequence of this is a drop in the
R values as compared with those of a plain electron gas.

B. Inverse mean-free path and ionization cross-section ratios

The vicinage effect in this case is represented by a ratio
R defined in a similar way as in the stopping power case
[Eq. (48)], replacing the terms �E indep and �E inter by the
probability terms Pind and Pvic, which are obtained from
the average of the terms Pind(b1, b2) and Pvic(b1, b2) defined
before.

As a final test of EWPM and SIPM we consider now the
calculation of inelastic cross sections. These quantities are
highly sensitive to energy binding effects; therefore, these
calculations provide a very stringent numerical test to the
present approach. Figure 6 shows the results for C, Al, and Si
ionization cross-section ratios together with some experimen-
tal results for the relevant inner shells using the typical value
proposed by Brandt et al. [11] for the internuclear distance. A
significant improvement of the theoretical results introducing
the binding energy with the EWPM model is observed for Si
and Al targets, as for the case of protons [37]. For the C target,
the results are not conclusive. On the other hand, SIPM results
for Si and Al targets show a strong difference between 2p and

2s shells. However, experiments show very few points for all
the targets and do not distinguish between 2s and 2p shells.
Thus more experiments should be performed to test the ef-
fects predicted by our calculations; in particular, the expected
growth of the vicinage effects in the L-shell ionization of Al
and Si for energies over 2 MeV/u, as shown in Fig. 6.

VII. CONCLUSIONS

In this work we have studied the vicinage effects in the
energy loss of pairs of correlated protons corresponding to the
incidence of swift H2

+ ions on solid targets. We considered
two alternative methods: a semiclassical description and the
dielectric approach. One one side, we have reformulated the
semiclassical impact-parameter method (SIPM), taking into
account screening and close-collision corrections, and on the
other, we have used a recently extended wave-packet model
(EWPM) that includes the effect of energy thresholds on a
dielectric formulation based on Gaussian wave packets in
order to describe inner-shell excitations.

The dielectric formulation for the energy loss of correlated
ions is good for delocalized excitations, such as in the case
of valence or conduction electrons. However, it is not quite
appropriate to describe correlated excitations of inner-shell
electrons, since it does not take properly into account the
localization effects associated with different impact param-
eters of the moving ions with respect to a target atom. For
this reason, the semiclassical description based on the impact-
parameter method (SIPM), as reformulated here, provides a
more adequate representation. As a test of both methods, we
have performed specific calculations of vicinage effects in
energy losses and inner-shell ionization for various accessi-
ble targets (C, Al, Si, Al2O3, and SiO2) and compared the
calculations with existing experimental results. In particular,
we described the important effects produced by the screening,
the role of close and distant collisions, and the effects of
energy thresholds. Inclusions of close-collision corrections
(both from classical and quantum origin) and screening effects
produce significant improvements on the impact-parameter
representation and provide more adequate results than when
those effects are neglected.

Some of the important aspects of the phenomenon studied
here are the following:

(1) The relative contribution of close and distant collisions
was studied using the SIPM approach, showing the growing
importance of distant collisions in the vicinage effect with
increasing energies, both in stopping power and inner-shell
excitations.

(2) The screening of the interactions reduces the magnitude
of the vicinage effects, because it reduces the contribution of
distant collisions according to the description provided by the
SIPM method.

(3) The onset of inner-shell excitations produces an addi-
tional decrease in the vicinage effect, because the stopping
terms corresponding to inner-shell excitations by indepen-
dent ions grow more drastically than the corresponding in-
terference terms. The effect arising from these calculations
has not been experimentally observed so far. Experimental
verification of this prediction would require higher energies
than those so far explored.
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(4) Existing experimental data on stopping as well as
inner-shell excitations have covered so far mainly the low
and intermediate energy ranges, where the effects are not so
strong, and show in some cases very large dispersion of results
(like the case of C).

The present work strongly suggests new experiments at
intermediate and higher energies to test new theoretical
predictions and revealing differences between various models.
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