321 research outputs found

    A new viable region of the inert doublet model

    Full text link
    The inert doublet model, a minimal extension of the Standard Model by a second Higgs doublet, is one of the simplest and most attractive scenarios that can explain the dark matter. In this paper, we demonstrate the existence of a new viable region of the inert doublet model featuring dark matter masses between Mw and about 160 GeV. Along this previously overlooked region of the parameter space, the correct relic density is obtained thanks to cancellations between different diagrams contributing to dark matter annihilation into gauge bosons (W+W- and ZZ). First, we explain how these cancellations come about and show several examples illustrating the effect of the parameters of the model on the cancellations themselves and on the predicted relic density. Then, we perform a full scan of the new viable region and analyze it in detail by projecting it onto several two-dimensional planes. Finally, the prospects for the direct and the indirect detection of inert Higgs dark matter within this new viable region are studied. We find that present direct detection bounds already rule out a fraction of the new parameter space and that future direct detection experiments, such as Xenon100, will easily probe the remaining part in its entirety.Comment: 27 pages, 16 figure

    Sneutrino cold dark matter, a new analysis: relic abundance and detection rates

    Get PDF
    We perform a new and updated analysis of sneutrinos as dark matter candidates, in different classes of supersymmetric models. We extend previous analyses by studying sneutrino phenomenology for full variations of the supersymmetric parameters which define the various models. We first revisit the standard Minimal Supersymmetric Standard Model, concluding that sneutrinos are marginally compatible with existing experimental bounds, including direct detection, provided they compose a subdominant component of dark matter. We then study supersymmetric models with the inclusion of right-handed fields and lepton-number violating terms. Simple versions of the lepton-number-violating models do not lead to phenomenology different from the standard case when the neutrino mass bounds are properly included. On the contrary, models with right-handed fields are perfectly viable: they predict sneutrinos which are compatible with the current direct detection sensitivities, both as subdominant and dominant dark matter components. We also study the indirect detection signals for such successful models: predictions for antiproton, antideuteron and gamma-ray fluxes are provided and compared with existing and future experimental sensitivities. The neutrino flux from the center of the Earth is also analyzed.Comment: 72 pages, 50 figures. The version on the archive has low-resolution figures. The paper with high resolution figures may be found through http://www.to.infn.it/~arina/papers or http://www.to.infn.it/~fornengo/Research/paperlist.htm

    Light neutralino in the MSSM: An update with the latest LHC results

    Full text link
    We discuss the scenario of light neutralino dark matter in the minimal supersymmetric standard model, which is motivated by the results of some of the direct detection experiments --- DAMA, CoGENT, and CRESST. We update our previous analysis with the latest results of the LHC. We show that new LHC constraints disfavour the parameter region that can reproduce the results of DAMA and CoGENT.Comment: 4 pages, 4 figures, to appear in the conference proceedings of TAUP 2011, Munich Germany, 5-9 September 201

    Restudy on Dark Matter Time-Evolution in the Littlest Higgs model with T-parity

    Full text link
    Following previous study, in the Littlest Higgs model (LHM), the heavy photon is supposed to be a possible dark matter candidate and its relic abundance of the heavy photon is estimated in terms of the Boltzman-Lee-Weinberg time-evolution equation. The effects of the T-parity violation is also considered. Our calculations show that when Higgs mass MHM_H taken to be 300 GeV and don't consider T-parity violation, only two narrow ranges 133<MAH<135133<M_{A_{H}}<135 GeV and 167<MAH<169167<M_{A_{H}}<169 GeV are tolerable with the current astrophysical observation and if 135<MAH<167135<M_{A_{H}}<167 GeV, there must at least exist another species of heavy particle contributing to the cold dark matter. As long as the T-parity can be violated, the heavy photon can decay into regular standard model particles and would affect the dark matter abundance in the universe, we discuss the constraint on the T-parity violation parameter based on the present data. Direct detection prospects are also discussed in some detail.Comment: 13 pages, 11 figures include

    Minimal Supersymmetric Inverse Seesaw: Neutrino masses, lepton flavour violation and LHC phenomenology

    Get PDF
    We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as μ→eγ\mu \to e \gamma, and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.Comment: 26 pages, 4 figures; added explanatory comments, final version for publicatio

    VDM: A model for Vector Dark Matter

    Full text link
    We construct a model based on a new U(1)XU(1)_X gauge symmetry and a discrete Z2Z_2 symmetry under which the new gauge boson is odd. The model contains new complex scalars which carry U(1)XU(1)_X charge but are singlets of the Standard Model. The U(1)XU(1)_X symmetry is spontaneously broken but the Z2Z_2 symmetry is maintained, making the new gauge boson a dark matter candidate. In the minimal version there is only one complex scalar field but by extending the number of scalars to two, the model will enjoy rich phenomenology which comes in various phases. In one phase, CP is spontaneously broken. In the other phase, an accidental Z2Z_2 symmetry appears which makes one of the scalars stable and therefore a dark matter candidate along with the vector boson. We discuss the discovery potential of the model by colliders as well as the direct dark matter searches.Comment: 22 pages, 2 figure

    Seesaw Extended MSSM and Anomaly Mediation without Tachyonic Sleptons

    Full text link
    Superconformal anomalies provide an elegant and economical way to understand the soft breaking parameters in SUSY models; however, implementing them leads to the several undesirable features including: tachyonic sleptons and electroweak symmetry breaking problems in both the MSSM and the NMSSM. Since these two theories also have the additonal problem of massless neutrinos, we have reconsidered the AMSB problems in a class of models that extends the NMSSM to explain small neutrino masses via the seesaw mechanism. In a recent paper, we showed that for a class of minimal left-right extensions, a built-in mechanism exists which naturally solves the tachyonic slepton problem and provides new alternatives to the MSSM that also have automatic R-parity conservation. In this paper, we discuss how electroweak symmetry breaking arises in this model through an NMSSM-like low energy theory with a singlet VEV, induced by the structure of the left-right extension and of the right magnitude. We then study the phenomenological issues and find: the LSP is an Higgsino-wino mix, new phenomenology for chargino decays to the LSP, degenerate same generation sleptons and a potential for a mild squark-slepton degeneracy. We also discuss possible collider signatures and the feasibility of dark matter in this model.Comment: 40 pages, 10 figures, 5 tables; v3: Added addendum and three new references; v4: Added reference that was inadvertently omitte

    Gamma Ray Lines from a Universal Extra Dimension

    Full text link
    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \gamma \gamma, but we extend these results to include \gamma Z and \gamma H final states. We find that these spectral lines are subdominant compared to the predicted \gamma \gamma signal, but they would be important as follow-up signals in the event of the observation of the \gamma \gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.Comment: 21 pages, 6 figure

    The Maximal U(1)LU(1)_L Inverse Seesaw from d=5d=5 Operator and Oscillating Asymmetric Sneutrino Dark Matter

    Get PDF
    The maximal U(1)LU(1)_L supersymmetric inverse seesaw mechanism (MLLSIS) provides a natural way to relate asymmetric dark matter (ADM) with neutrino physics. In this paper we point out that, MLLSIS is a natural outcome if one dynamically realizes the inverse seesaw mechanism in the next-to minimal supersymmetric standard model (NMSSM) via the dimension-five operator (N)2S2/M∗(N)^2S^2/M_*, with SS the NMSSM singlet developing TeV scale VEV; it slightly violates lepton number due to the suppression by the fundamental scale M∗M_*, thus preserving U(1)LU(1)_L maximally. The resulting sneutrino is a distinguishable ADM candidate, oscillating and favored to have weak scale mass. A fairly large annihilating cross section of such a heavy ADM is available due to the presence of singlet.Comment: journal versio
    • …
    corecore