42 research outputs found

    Increased Risk of Aortic Dissection with Perlecan Deficiency

    No full text
    Perlecan (HSPG2), a basement membrane-type heparan sulfate proteoglycan, has been implicated in the development of aortic tissue. However, its role in the development and maintenance of the aortic wall remains unknown. Perlecan-deficient mice (Hspg2−/−-Tg: Perl KO) have been found to show a high frequency (15–35%) of aortic dissection (AD). Herein, an analysis of the aortic wall of Perl KO mice revealed that perlecan deficiency caused thinner and partially torn elastic lamina. Compared to the control aortic tissue, perlecan-deficient aortic tissue showed a significant decrease in desmosine content and an increase in soluble tropoelastin levels, implying the presence of immature elastic fibers in Perl KO mice. Furthermore, the reduced expression of the smooth muscle cell contractile proteins actin and myosin in perlecan-deficient aortic tissue may explain the risk of AD. This study showed that a deficiency in perlecan, which is localized along the elastic lamina and at the interface between elastin and fibrillin-1, increased the risk of AD, largely due to the immaturity of extracellular matrix in the aortic tissue. Overall, we proposed a new model of AD that considers the deficiency of extracellular molecule perlecan as a risk factor

    Regulation of fractone heparan sulfate composition in young and aged subventricular zone neurogenic niches

    No full text
    International audienceAbstract Fractones, specialized extracellular matrix structures found in the subventricular zone (SVZ) neurogenic niche, can capture growth factors, such as basic fibroblast growth factor, from the extracellular milieu through a heparin-binding mechanism for neural stem cell presentation, which promotes neurogenesis. During aging, a decline in neurogenesis correlates with a change in the composition of heparan sulfate (HS) within fractones. In this study, we used antibodies that recognize specific short oligosaccharides with varying sulfation to evaluate the HS composition in fractones in young and aged brains. To further understand the conditions that regulate 6-O sulfation levels and its impact on neurogenesis, we used endosulfatase Sulf1 and Sulf2 double knock out (DKO) mice. Fractones in the SVZ of Sulf1/2 DKO mice showed immunoreactivity for the HS epitope, suggesting higher 6-O sulfation. While neurogenesis declined in the aged SVZ of both WT and Sulf1/2 DKO mice, we observed a larger number of neuroblasts in the young and aged SVZ of Sulf1/2 DKO mice. Together, these results show that the removal of 6-O-sulfation in fractones HS by endosulfatases inhibits neurogenesis in the SVZ. Our findings advance the current understanding regarding the extracellular environment that is best suited for neural stem cells to thrive, which is critical for the design of future stem cell therapies

    α-1,6-Fucosyltransferase Is Essential for Myogenesis in Zebrafish

    No full text
    Glycosylation is an important mechanism regulating various biological processes, including intercellular signaling and adhesion. α-1,6-fucosyltransferase (Fut8) belongs to a family of enzymes that determine the terminal structure of glycans. Fut8 is widely conserved from Caenorhabditis elegans to humans, and its mutants have been reported in humans, mice, and zebrafish. Although mutants show various symptoms, such as spinal deformity and growth retardation, its effects on skeletal muscles are unknown. We aimed to elucidate the function of Fut8 in skeletal muscle using zebrafish and C2C12 cells for evaluation. We observed that most fut8a morphants died at 2 days post-fertilization (dpf) or in earlier developmental stages even at low concentrations of morpholino oligonucleotides (MOs). Mutant juveniles also had small body sizes, and abnormal myocepta and sarcomere structures, suggesting that Fut8a plays important roles in myogenesis. Moreover, treatment of C2C12 cells with 2-fluorofucose (2FF), a fucosylation inhibitor, during cell differentiation dramatically reduced the expression of myogenic genes, such as Myomaker and other myogenic fusion genes, and inhibited myotube formation. These results indicate that Fut8 is an important factor in myogenesis, and myofusion in particular

    Isolation and characterization of multipotential mesenchymal cells from the mouse synovium.

    Get PDF
    The human synovium contains mesenchymal stem cells (MSCs), which are multipotential non-hematopoietic progenitor cells that can differentiate into a variety of mesenchymal lineages and they may therefore be a candidate cell source for tissue repair. However, the molecular mechanisms by which this can occur are still largely unknown. Mouse primary cell culture enables us to investigate the molecular mechanisms underlying various phenomena because it allows for relatively easy gene manipulation, which is indispensable for the molecular analysis. However, mouse synovial mesenchymal cells (SMCs) have not been established, although rabbit, cow, and rat SMCs are available, in addition to human MSCs. The aim of this study was to establish methods to harvest the synovium and to isolate and culture primary SMCs from mice. As the mouse SMCs were not able to be harvested and isolated using the same protocol for human, rat and rabbit SMCs, the protocol for humans was modified for SMCs from the Balb/c mouse knee joint. The mouse SMCs obtained showed superior proliferative potential, growth kinetics and colony formation compared to cells derived from muscle and bone marrow. They expressed PDGFRá and Sca-1 detected by flow cytometry, and showed an osteogenic, adipogenic and chondrogenic potential similar or superior to the cells derived from muscle and bone marrow by demonstrating in vitro osteogenesis, adipogenesis and chondrogenesis. In conclusion, we established a primary mouse synovial cell culture method. The cells derived from the mouse synovium demonstrated both the ability to proliferate and multipotentiality similar or superior to the cells derived from muscle and bone marrow

    Perlecan is required for FGF-2 signaling in the neural stem cell niche

    Get PDF
    In the adult subventricular zone (neurogenic niche), neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis

    Laminin-121-Recombinant expression and interactions with integrins

    No full text
    Laminin-121, previously referred as to laminin-3, was expressed recombinantly in human embryonic kidney (HEK) 293 cells by triple transfection of full-length cDNAs encoding mouse laminin α1, β2 and γ1 chains. The recombinant laminin-121 was purified using Heparin-Sepharose followed by molecular sieve chromatography and shown to be correctly folded by electron microscopy and circular dichroism (CD). The CD spectra of recombinant laminin-121 were very similar to those of laminin-111 isolated from Engelbreth-Holm Swarm tumor (EHS-laminin) but its T(m) value was smaller than EHS-laminin and recombinant lamnin-111 suggesting that the replacement of the β chain reduced the stability of the coiled-coil structure of laminin-121. Its binding to integrins was compared with EHS-laminin, laminin-3A32 purified from murine epidermal cell line and recombinantly expressed laminins-111, -211 and -221. Laminin-121 showed the highest affinity to α6β1 and α7β1 integrins and furthermore, laminin-121 most effectively supported neurite outgrowth. Together, this suggests that the β2 laminins have higher affinity for integrins than the β1 laminins
    corecore