1,211 research outputs found

    Disentangling phase transitions and critical points in the proton-neutron interacting boson model by catastrophe theory

    Get PDF
    We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton-neutron interacting boson model (IBM-2). Previous studies [1,2,3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.Comment: To be published in Physics Letters

    Excited-state quantum phase transitions in a two-fluid Lipkin model

    Get PDF
    Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-state quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincar\'e sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm

    Integrability and Quantum Phase Transitions in Interacting Boson Models

    Full text link
    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.Comment: 5 pages, 5 fig. Erice Conferenc

    Intrinsic structure of two-phonon states in the interacting boson model

    Get PDF
    A general study of excitations up to two-phonon states is carried out using the intrinsic-state formalism of the Interacting Boson Model (IBM). Spectra and transitions for the different dynamical symmetries are analyzed and the correspondence with states in the laboratory frame is established. The influence of multi-phonon states is discussed. The approach is useful in problems where the complexity of the IBM spectrum renders the analysis in the laboratory frame difficult.Comment: 22 pages, TeX (ReVTeX). 7 eps figures. Submitted to Nucl. Phys.

    Microsatellite markers in Spanish lime (Melicoccus bijugatus Jacq., Sapindaceae), a neglected Neotropical fruit crop

    Get PDF
    Spanish lime (Melicoccus bijugatus Jacq.) is aNeotropical fruit tree cultivated, mainly, in orchards for self-consumption or local sale. The genus Melicoccus includes other nine species with edible fruits, some of these species are at risk of extinction. Like for the vast majority of tropical fruit trees, there is no information on the genetic diversity of Spanish lime and its related species, and this is mostly due to the lack of molecular markers. The objectives of this study were to present the first microsatellite markers developed for Spanish lime, testing its usefulness on a sample of cultivated accessions, as well as its transferability to Huaya India (M. oliviformis). To do this, we performed high-throughput sequencing of microsatellite-enriched libraries of Spanish lime using Roche 454, assembled 9567 DNA contig sequences and identified 10,117 microsatellites. After screening 384 of those microsatellites on four DNA samples, 31 polymorphic markers were used to screen 25 accessions of Spanish lime and five of Huaya India collected in Yucatan, Mexico. Genetic diversity was low in Spanish lime (A = 20.61, HE = 0.38) and similar for both sexes of this species. Neighbor-Joining and PCoA analyses clearly discriminated between the two Melicoccus species studied. Nine of the markers showed unique alleles for Huaya India. The set of microsatellite markers developed has a great potential to generate information in relation to conservation genetics, improvement of elite cultivars and breeding programs for Spanish lime and related species

    Reproductive and nutritional management on ovarian response and embryo quality on rabbit does

    Get PDF
    Rabbit does in modern rabbitries are under intensive reproductive rhythms. Females are high milk producers with high energetic expenses due to the extensive overlap between lactation and gestation. This situation leads to a negative energy balance with a mobilization of body fat especially in primiparous rabbit does. Poor body condition and poor health status severely affect the reproductive features (fertility rate and lifespan of the doe as well as ovarian physiology). This paper reviews some reproductive and nutritional approaches used in the last years to improve the reproductive performance of rabbit females, mainly focusing on the influence on ovarian response and embryo quality and with emphasis on epigenetic modifications in pre-implantation embryos and offspring consequences

    Voltage imaging reveals the dynamic electrical signatures of human breast cancer cells

    Get PDF
    Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to ‘excitable’ tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy” to “blinking/waving“. The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-β1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors
    corecore