34 research outputs found

    NAFLD incidence and remission: Only a matter of weight gain and weight loss?

    Get PDF
    The prevalence of non-alcoholic fatty liver disease (NAFLD) in the community is probably rising, driven by the epidemics of obesity and diabetes. A provocative study on obesity prevalence in the U.S. suggested that, given the trend observed between 1970 and 2004, all American adults would become overweight or obese by 2048, with differences between genders and ethnic ancestry [1]. Similar data exist for the prevalence of type 2 diabetes, which is now well above a 10% prevalence rate in several countries, with an estimated total of 382 million cases throughout the world and a prospective rise to 592 million cases in the next 25 years [2]. From the early description of NAFLD, we know that the disease is intimately connected with obesity, diabetes and the metabolic syndrome, therefore it is not surprising that NAFLD is among the top three causes of liver transplantation. Considering the rapid advances in antiviral therapy, it is expected to become the most common indication in the near future. A correct identification of incident cases may help to determine additional risk factors and program therapeutic interventions. Only a few studies have been available so far on fatty liver or NAFLD incidence (Table 1). The usual method to diagnose NAFLD has been ultrasonography, sometimes coupled with raised liver enzymes [3–10]. We all know that this method is crude, imprecise, highly insensitive and operator-dependent and cannot provide quantitative data. Overall, data are remarkably different in relation to study population, age, gender and comorbidities (in particular, to the presence/absence of obesity and the method of ascertainment). In the present issue of the Journal, Wong et al. present their analysis of NAFLD incidence based on paired proton-magnetic resonance spectroscopy (MRS) in a community-based Hong-Kong cohort, where also the parameters of metabolic syndrome were recorded [11]. In 565 cases without evidence of NAFLD at baseline (intrahepatic triglyceride (IHTG) content 5%) was set at 3.4% per year, after exclusion of two cases with excessive alcohol intake, with 20% of new cases in the range of moderate-severe steatosis and only one patient with liver stiffness indicative of advanced fibrosis. The presence of metabolic syndrome at baseline was the strongest predictor of incident steatosis, which was also associated with incident obesity, incident metabolic syndrome, and no remission of impaired glucose tolerance

    The Role of Medications for the Management of Patients with NAFLD

    Get PDF
    The article is intended to provide an overview of the strengths and limits of controlled trials of pharmacological treatment of NAFLD. No drug has so far been approved, although validated on histological outcomes. Several new drugs are under scrutiny, acting with different mechanisms along the chain of events from fatty liver to fibrosis, cirrhosis and hepatocellular carcinoma. We need to know which drug, if any, should be preferred for a tailored intervention in individual patients, according to age, comorbidities and disease severity, and if treatment should be continued lifelong, to prevent disease progression and long-term occurrence of cirrhosis

    Stress Hyperglycemia and Complications Following Traumatic Injuries in Individuals With/Without Diabetes: The Case of Orthopedic Surgery

    Get PDF
    Purpose: Hyperglycemia in trauma patients may stem from metabolic response to stress, both in the presence and the absence of underlying diabetes. We aimed to test the association of stress hyperglycemia with risks of adverse events subjects undergoing orthopedic surgery. Patients and Methods: In a prospective observational study, we enrolled 202 consecutive patients with hyperglycemia at hospital admission for trauma injuries requiring orthopedic surgery. Based on history, diabetes was present in 183, and 13 more were defined as unknown diabetes on the basis of HbA1c ≥48mmol/mol. Stress hyperglycemia was defined in subjects with/without diabetes by a stress hyperglycemia ratio (SHR) >1.14, calculated as admission glucose/average glucose, estimated from glycosylated hemoglobin. Logistic regression analysis was used to calculate the risk of post-surgery adverse events associated with different states of hyperglycemia, after correction for demographic and clinical confounders. Results: Stress hyperglycemia was diagnosed, either as superimposed to diabetes (54/196 cases, 27.6%) as well as in the 6 cases without diabetes. At least one complication was recorded in 68 cases (33.7%), the most common being systemic infection (22.8% of cases). In the total cohort, stress hyperglycemia, irrespective of the presence of diabetes, increased the risk of adverse events (any events, odds ratio [OR], 4.43; 95% confidence interval [CI], 2.11–9.30), cardiovascular events (OR, 7.09; 95% CI, 2.47–19.91), systemic infections (OR, 4.21; 95% CI, 1.97–9.03) and other adverse events (OR, 6.30; 95% CI, 1.41–28.03), after adjustment for confounders; hospital stay was much longer. The same was true when the analysis was limited to the diabetes cohort or by comparing pure stress hyperglycemia vs diabetes without stress hyperglycemia. Conclusion: The study highlights the importance of stress hyperglycemia for adverse events in the setting of orthopedic surgery following trauma injuries. This condition requires stricter management, considering the much longer length of hospital stay and higher costs

    Assessment of the structural and functional characteristics of human mesenchymal stem cells associated with a prolonged exposure of morphine

    Get PDF
    The discovery of the expression of opioid receptors in the skin and their role in orchestrating the process of tissue repair gave rise to questions regarding the potential effects of clinical morphine treatment in wound healing. Although short term treatment was reported to improve tissue regeneration, in vivo chronic administration was associated to an impairment of the physiological healing process and systemic fibrosis. Human mesenchymal stem cells (hMSCs) play a fundamental role in tissue regeneration. In this regard, acute morphine exposition was recently reported to impact negatively on the functional characteristics of hMSCs, but little is currently known about its long-term effects. To determine how a prolonged treatment could impair their functional characteristics, we exposed hMSCs to increasing morphine concentrations respectively for nine and eighteen days, evaluating in particular the fibrogenic potential exerted by the long-term exposition. Our results showed a time dependent cell viability decline, and conditions compatible with a cellular senescent state. Ultrastructural and protein expression analysis were indicative of increased autophagy, suggesting a relation to a detoxification activity. In addition, the enhanced transcription observed for the genes involved in the synthesis and regulation of type I collagen suggested the possibility that a prolonged morphine treatment might exert its fibrotic potential risk, even involving the hMSCs

    Insights in opiates toxicity: impairment of human vascular mesenchymal stromal cells

    Get PDF
    : The most common pulmonary findings in opiate-related fatalities are congestion and oedema, as well as acute and/or chronic alveolar haemorrhage, the cause of which is thought to be a damage to the capillary endothelium related to ischemia. Human vascular mesenchymal stromal cells (vMSCs) play a fundamental role in tissue regeneration and repair after endothelial cell injury, and they express opioid receptors. The aim of this study was to assess the effect of in vitro morphine exposure on the physiological activity and maintenance of human vMSCs. vMSCs were obtained from abdominal aorta fragments collected during surgery repair and were exposed to incremental doses (0.1 mM, 0.4 mM, 0.8 mM and 1 mM) of morphine sulphate for 7 days. The effect was investigated through cell viability assessment, proliferation assay, reactive oxygen species (ROS) detection assay, senescence-associated β-galactosidase assay, senescent-related markers (p21WAF1/CIP1 and p16INK4) and the apoptosis-related marker caspase 3. Moreover, an ultrastructural analysis by transmission electron microscopy and in vitro vascular differentiation were evaluated. Results showed a decrease of the cellular metabolic activity, a pro-oxidant and pro-senescence effect, an increase in intracellular ROS and the activation of the apoptosis signalling, as well as ultrastructural modifications and impairment of vascular differentiation after morphine treatment of vMSC. Although confirmation studies are required on real fatal opiate intoxications, the approach based on morphological and immunofluorescence methodologies may have a high potential also as a useful tool or as a complementary method in forensic pathology. The application of these techniques in the future may lead to the identification of new markers and morphological parameters useful as complementary investigations for drug-related deaths

    An internet-based approach for lifestyle changes in patients with NAFLD: Two-year effects on weight loss and surrogate markers

    Get PDF
    Background & Aims Interventions aimed at lifestyle changes are pivotal for the treatment of non-alcoholic fatty liver disease (NAFLD), and web-based programs might help remove barriers in both patients and therapists. Methods In the period 2010–15, 716 consecutive NAFLD cases (mean age, 52; type 2 diabetes, 33%) were treated in our Department with structured programs. The usual protocol included motivational interviewing and a group-based intervention (GBI), chaired by physicians, dietitians and psychologists (five weekly meetings, n = 438). Individuals who could not attend GBI entered a web-based intervention (WBI, n = 278) derived from GBI, with interactive games, learning tests, motivational tests, and mail contacts with the center. The primary outcome was weight loss ≥10%; secondary outcomes were alanine aminotransferase within normal limits, changes in lifestyle, weight, alanine aminotransferase, and surrogate markers of steatosis and fibrosis. Results GBI and WBI cohorts had similar body mass index (mean, 33 kg/m2), with more males (67% vs. 45%), younger age, higher education, and more physical activity in the WBI group. The two-year attrition rate was higher in the WBI group. Healthy lifestyle changes were observed in both groups and body mass index decreased by almost two points; the 10% weight target was reached in 20% of WBI cases vs. 15% in GBI (not significant). In logistic regression analysis, after adjustment for confounders and attrition rates, WBI was not associated with a reduction of patients reaching short- and long-term 10% weight targets. Liver enzymes decreased in both groups, and normalized more frequently in WBI. Fatty liver index was reduced, whereas fibrosis remained stable (NAFLD fibrosis score) or similarly decreased (Fib-4). Conclusion WBI is not less effective than common lifestyle programs, as measured by significant clinical outcomes associated with improved histological outcomes in NAFLD. eHealth programs may effectively contribute to NAFLD control. Lay summary In patients with non-alcoholic fatty liver disease, participation in structured lifestyle programs may be jeopardized by job and time constraints. A web-based intervention may be better suited for young, busy patients, and for those living far from liver units. The study shows that, following a structured motivational approach, a web-based, interactive intervention coupled with six-month face-to-face meetings is not inferior to a standard group-based intervention with respect to weight loss, adherence to healthy diet and habitual physical activity, normalization of liver enzymes, and stable surrogate markers of fibrosis

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    The Role of Medications for the Management of Patients with NAFLD

    No full text
    The article is intended to provide an overview of the strengths and limits of controlled trials of pharmacological treatment of NAFLD. No drug has so far been approved, although validated on histological outcomes. Several new drugs are under scrutiny, acting with different mechanisms along the chain of events from fatty liver to fibrosis, cirrhosis and hepatocellular carcinoma. We need to know which drug, if any, should be preferred for a tailored intervention in individual patients, according to age, comorbidities and disease severity, and if treatment should be continued lifelong, to prevent disease progression and long-term occurrence of cirrhosis
    corecore