11 research outputs found

    Phylogenetic and regulatory region analysis of Wnt5 genes reveals conservation of a regulatory module with putative implication in pancreas development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Wnt5 </it>genes belong to the large <it>Wnt </it>family, encoding proteins implicated into several tumorigenic and developmental processes. Phylogenetic analyses showed that <it>Wnt5 </it>gene has been duplicated at the divergence time of gnathostomata from agnatha. Interestingly, experimental data for some species indicated that only one of the two <it>Wnt5 </it>paralogs participates in the development of the endocrine pancreas. The purpose of this paper is to reexamine the phylogenetic history of the Wnt5 developmental regulators and investigate the functional shift between paralogs through comparative genomics.</p> <p>Results</p> <p>In this study, the phylogeny of <it>Wnt5 </it>genes was investigated in species belonging to <it>protostomia </it>and <it>deuterostomia</it>. Furthermore, an <it>in silico </it>regulatory region analysis of <it>Wnt5 </it>paralogs was conducted, limited to those species with insulin producing cells and pancreas, covering the evolutionary distance from agnatha to gnathostomata. Our results confirmed the <it>Wnt5 </it>gene duplication and additionally revealed that this duplication event included also the upstream region. Moreover, within this latter region, a conserved module was detected to which a complex of transcription factors, known to be implicated in embryonic pancreas formation, bind.</p> <p>Conclusions</p> <p>Results and observations presented in this study, allow us to conclude that during evolution, the <it>Wnt5 </it>gene has been duplicated in early vertebrates, and that some paralogs conserved a module within their regulatory region, functionally related to embryonic development of pancreas. Interestingly, our results allowed advancing a possible explanation on why the <it>Wnt5 </it>orthologs do not share the same function during pancreas development. As a final remark, we suggest that an <it>in silico </it>comparative analysis of regulatory regions, especially when associated to published experimental data, represents a powerful approach for explaining shift of roles among paralogs.</p> <p>Reviewers</p> <p>This article was reviewed by Sarath Janga (nominated by Sarah Teichmann), Ran Kafri (nominated by Yitzhak Pilpel), and Andrey Mironov (nominated by Mikhail Gelfand).</p

    In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    Get PDF
    ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening

    IsoXpressor: A Tool to Assess Transcriptional Activity within Isochores

    Get PDF
    Genomes are characterized by large regions of homogeneous base compositions known as isochores. The latter are divided into GC-poor and GC-rich classes linked to distinct functional and structural properties. Several studies have addressed how isochores shape function and structure. To aid in this important subject, we present IsoXpressor, a tool designed for the analysis of the functional property of transcription within isochores. IsoXpressor allows users to process RNA-Seq data in relation to the isochores, and it can be employed to investigate any biological question of interest for any species. The results presented herein as proof of concept are focused on the preimplantation process in Homo sapiens (human) and Macaca mulatta (rhesus monkey)

    Suppression of a Prolyl 4 Hydroxylase Results in Delayed Abscission of Overripe Tomato Fruits

    Get PDF
    The tomato pedicel abscission zone (AZ) is considered a model system for flower and fruit abscission development, activation, and progression. O-glycosylated proteins such as the Arabidopsis IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) peptide and Arabinogalactan proteins (AGPs) which undergo proline hydroxylation were demonstrated to participate in abscission regulation. Considering that the frequency of occurrence of proline hydroxylation might determine the structure as well the function of such proteins, the expression of a tomato prolyl 4 hydroxylase, SlP4H3 (Solanum lycopersicum Prolyl 4 Hydroxylase 3) was suppressed in order to investigate the physiological significance of this post-translational modification in tomato abscission. Silencing of SlP4H3 resulted in the delay of abscission progression in overripe tomato fruits 90 days after the breaker stage. The cause of this delay was attributed to the downregulation of the expression of cell wall hydrolases such as SlTAPGs (tomato abscission polygalacturonases) and cellulases as well as expansins. In addition, minor changes were observed in the mRNA levels of two SlAGPs and one extensin. Moreover, structural changes were observed in the silenced SlP4H3AZs. The fracture plane of the AZ was curved and not along a line as in wild type and there was a lack of lignin deposition in the AZs of overripe fruits 30 days after breaker. These results suggest that proline hydroxylation might play a role in the regulation of tomato pedicel abscission

    Transcriptome map of mouse isochores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of fully sequenced genomes and the implementation of transcriptome technologies have increased the studies investigating the expression profiles for a variety of tissues, conditions, and species. In this study, using RNA-seq data for three distinct tissues (brain, liver, and muscle), we investigate how base composition affects mammalian gene expression, an issue of prime practical and evolutionary interest.</p> <p>Results</p> <p>We present the transcriptome map of the mouse isochores (DNA segments with a fairly homogeneous base composition) for the three different tissues and the effects of isochores' base composition on their expression activity. Our analyses also cover the relations between the genes' expression activity and their localization in the isochore families.</p> <p>Conclusions</p> <p>This study is the first where next-generation sequencing data are used to associate the effects of both genomic and genic compositional properties to their corresponding expression activity. Our findings confirm previous results, and further support the existence of a relationship between isochores and gene expression. This relationship corroborates that isochores are primarily a product of evolutionary adaptation rather than a simple by-product of neutral evolutionary processes.</p

    Isochores and the Regulation of Gene Expression in the Human Genome

    Get PDF
    It is well established that changes in the phenotype depend much more on changes in gene expression than on changes in protein-coding genes, and that cis-regulatory sequences and chromatin structure are two major factors influencing gene expression. Here, we investigated these factors at the genome-wide level by focusing on the trinucleotide patterns in the 0.1- to 25-kb regions flanking the human genes that are present in the GC-poorest L1 and GC-richest H3 isochore families, the other families exhibiting intermediate patterns. We could show 1) that the trinucleotide patterns of the 25-kb gene-flanking regions are representative of the very different patterns already reported for the whole isochores from the L1 and H3 families and, expectedly, identical in upstream and downstream locations; 2) that the patterns of the 0.1- to 0.5-kb regions in the L1 and H3 isochores are remarkably more divergent and more specific when compared with those of the 25-kb regions, as well as different in the upstream and downstream locations; and 3) that these patterns fade into the 25-kb patterns around 5kb in both upstream and downstream locations. The 25-kb findings indicate differences in nucleosome positioning and density in different isochore families, those of the 0.1- to 0.5-kb sequences indicate differences in the transcription factors that bind upstream and downstream of genes. These results indicate differences in the regulation of genes located in different isochore families, a point of functional and evolutionary relevance

    Towards single-cell gene expression profiling: assessing amplification biases

    No full text
    Summarization: Single-cell transcriptome analysis is a very promising, yet a challenging method, for understanding various developmental and pathological processes in which fate is dictated by individual cells. RNA amplification from picogram amounts to quantities sufficient for next generation sequencing and/or microarray analysis, unavoidably introduces biases, that distort the single-cell transcriptome profile. In order to eliminate these biases, both experimental optimization of the amplification methodology and computational approaches are required. The latter comprehends normalization and scaling procedures aiming to correct the introduced biases and extract true biological traits. In this work, we compare microarray transcriptome profiling data from single MCF7 breast cancer cells with those from bulk (unamplified) RNA preparations from the same source, in order to evaluate, characterize and correct the biases introduced by the amplification protocols. Our approach involves scale-down measurements and the employment of normalization procedures, as well as internal normalization resources, such as housekeeping genes, to observe and minimize technical noise introduced by the experimental methods. Directing this work towards the understanding of single-cell processes responsible for the establishment of distant cancer metastasis we have further applied and validated our method on isolated individual circulating tumor cells (CTCs).Presented on

    Transcriptome map of mouse isochores in embryonic and neonatal cortex

    Get PDF
    AbstractSeveral studies on adult tissues agree on the presence of a positive effect of the genomic and genic base composition on mammalian gene expression. Recent literature supports the idea that during developmental processes GC-poor genomic regions are preferentially implicated. We investigate the relationship between the compositional properties of the isochores and of the genes with their respective expression activity during developmental processes. Using RNA-seq data from two distinct developmental stages of the mouse cortex, embryonic day 18 (E18) and postnatal day 7 (P7), we established for the first time a developmental-related transcriptome map of the mouse isochores. Additionally, for each stage we estimated the correlation between isochores' GC level and their expression activity, and the genes' expression patterns for each isochore family. Our analyses add evidence supporting the idea that during development GC-poor isochores are preferentially implicated, and confirm the positive effect of genes' GC level on their expression activity
    corecore