21 research outputs found

    Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

    Get PDF
    In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the ‘gold standard’. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a ‘gold standard’ test for EIB

    Eucapnic voluntary hyperpnea challenge can support management of exercise-induced bronchoconstriction in elite swimmers

    Get PDF
    Introduction: This study investigated the use of eucapnic voluntary hyperpnea (EVH) to monitor efficacy of pharmacological therapy in elite swimmers with exercise-induced bronchoconstriction (EIB). Secondly, it evaluated the long-term test-retest repeatability of EVH in this population. Methods: Twenty-seven elite international swimmers were included in this retrospective analysis of comprehensive respiratory assessments. Following an initial “withheld-therapy” assessment, athletes with EIB had been prescribed appropriate pharmacological therapy and returned twelve months later for a follow-up assessment to monitor EIB protection afforded by treatment. EIB-negative athletes had returned to confirm initial diagnosis, as were still reporting persistent respiratory symptoms. Athletes were retrospectively grouped into either “Therapy Adherent Group” (n = 12) or “Repeatability Group” (discontinued therapy at follow-up or EIB-negative, n = 15). Results: Greatest fall in forced expiratory volume in 1 second (ΔFEV1max) was significantly lower following therapy adherence (−11.8 ± 3.8%) compared to initial assessment (−24.0 ± 11.3%; P < .01). “Repeatability Group” ΔFEV1max did not differ significantly between initial assessment (−13.1 ± 4.5%) and follow-up (−12.3 ± 5.6%; P = .32), and showed good agreement (0.6%; −5.9%, 7.1%). Conclusion: A follow-up assessment utilizing EVH is useful in the management of EIB and shows good test-retest repeatability over twelve months in elite swimmers who discontinue treatment or are EIB-negative

    Air Embolism

    No full text

    Airway response to methacholine following eucapnic voluntary hyperpnea in athletes.

    No full text
    To evaluate the changes in airway responsiveness to methacholine inhalation test (MIT) when performed after an eucapnic voluntary hyperpnea challenge (EVH) in athletes.Two MIT preceded (visit 1) or not (visit 2) by an EVH, were performed in 28 athletes and 24 non-athletes. Twelve athletes and 13 non-athletes had airway hyperresponsiveness (AHR) to methacholine, and 11 athletes and 11 non-athletes had AHR to EVH (EVH+).The MIT PC20 post-EVH was significantly lower compared to baseline MIT PC20 by 1.3±0.7 doubling-concentrations in EVH+ athletes only (p<0.0001). No significant change was observed in EVH- athletes and EVH+/EVH- non-athletes. A significant correlation between the change in MIT PC20 post-EVH and EVH+/EVH- status and athlete/nonathlete status was found (Adjusted R2=0.26 and p<0.001). Three (11%) athletes and one (4%) non-athlete had a change in the diagnosis of AHR when MIT was performed consecutively to EVH.The responsiveness to methacholine was increased by a previous indirect challenge in EVH+ athletes only. The mechanisms for such increase remain to be determined. MIT and EVH should ideally be performed on separate occasions as there is a small but possible risk to obtain a false-positive response to methacholine when performed immediately after the EVH.ClinicalTrials.gov NCT00686491
    corecore