336 research outputs found

    Immune Dysregulation in Myelodysplastic Syndromes: Pathogenetic-Pathophysiologic Aspects and Clinical Consequences

    Get PDF
    Myelodysplastic syndromes are clonal hematopoietic stem cell disorders, in which the immune system plays a substantial pathogenetic role. Patients manifest frequent infections, mainly attributed to neutropenia, but sometimes opportunistic pathogens are isolated in non-neutropenic patients. They also exhibit autoimmune diseases or syndromes with a background of immune activation and various “abnormalities” of T-lymphocytes, B-lymphocytes, and NK cells. The most typical profile includes reduced total T lymphocytes (mainly CD4+ helper T-cells, resulting in decrease or inversion of the CD4/CD8 cell ratio) and impaired NK cell function. Many TH1 direction cytokines, and particularly sIL-2R, IL-6, and TNF-α are usually found increased in the serum and bone marrow, which have been strongly associated with advanced disease, anemia, and other disease-related features. Clonal origin of lymphocytes has been confirmed only in few cases. Mixed lymphocyte cultures and genomic assays have shown severely impaired immunoregulatory abnormalities, probably induced by the hematopoietic cells. In a minority of patients, immune activation is capable to prevent or delay clonal expansion, but these patients have more profound hematopoietic impairment. Immunosuppressive treatment may not only relieve the autoimmune manifestations but also improve hematopoiesis. However, this kind of treatment is not well tolerated, is associated with severe infections, and in some cases may enhance AML evolution

    Iron and Microbial Growth

    Get PDF

    Whole transcriptome analysis of human erythropoietic cells during ontogenesis suggests a role of VEGFA gene as modulator of fetal hemoglobin and pharmacogenomic biomarker of treatment response to hydroxyurea in β-type hemoglobinopathy patients

    Get PDF
    Background: Human erythropoiesis is characterized by distinct gene expression profiles at various developmental stages. Previous studies suggest that fetal-to-adult hemoglobin switch is regulated by a complex mechanism, in which many key players still remain unknown. Here, we report our findings from whole transcriptome analysis of erythroid cells, isolated from erythroid tissues at various developmental stages in an effort to identify distinct molecular signatures of each erythroid tissue.Results: From our in-depth data analysis, pathway analysis, and text mining, we opted to focus on the VEGFA gene, given its gene expression characteristics. Selected VEGFA genomic variants, identified through linkage disequilibrium analysis, were explored further for their association with elevated fetal hemoglobin levels in β-type hemoglobinopathy patients. Our downstream analysis of non-transfusion-dependent β-thalassemia patients, β-thalassemia major patients, compound heterozygous sickle cell disease/β-thalassemia patients receiving hydroxyurea as fetal hemoglobin augmentation treatment, and non-thalassemic individuals indicated that VEGFA genomic variants were associated with disease severity in β-thalassemia patients and hydroxyurea treatment efficacy in SCD/β-thalassemia compound heterozygous patients.Conclusions: Our findings suggest that VEGFA may act as a modifier gene of human globin gene expression and, at the same time, serve as a genomic biomarker in β-type hemoglobinopathy disease severity and hydroxyurea treatment efficacy

    Adjunctive Volasertib in Patients With Acute Myeloid Leukemia not Eligible for Standard Induction Therapy: A Randomized, Phase 3 Trial

    Get PDF
    Terapia de inducción estándar; Volasertib adyuvante; Leucemia mieloide agudaStandard Induction Therapy; Adjunctive Volasertib; Acute Myeloid LeukemiaTeràpia d'inducció estàndard; Volasertib adjuvant; Leucèmia mieloide agudaIn this phase 3 trial, older patients with acute myeloid leukemia ineligible for intensive chemotherapy were randomized 2:1 to receive the polo-like kinase inhibitor, volasertib (V; 350 mg intravenous on days 1 and 15 in 4-wk cycles), combined with low-dose cytarabine (LDAC; 20 mg subcutaneous, twice daily, days 1–10; n = 444), or LDAC plus placebo (P; n = 222). Primary endpoint was objective response rate (ORR); key secondary endpoint was overall survival (OS). Primary ORR analysis at recruitment completion included patients randomized ≥5 months beforehand; ORR was 25.2% for V+LDAC and 16.8% for P+LDAC (n = 371; odds ratio 1.66 [95% confidence interval (CI), 0.95–2.89]; P = 0.071). At final analysis (≥574 OS events), median OS was 5.6 months for V+LDAC and 6.5 months for P+LDAC (n = 666; hazard ratio 0.97 [95% CI, 0.8–1.2]; P = 0.757). The most common adverse events (AEs) were infections/infestations (grouped term; V+LDAC, 81.3%; P+LDAC, 63.5%) and febrile neutropenia (V+LDAC, 60.4%; P+LDAC, 29.3%). Fatal AEs occurred in 31.2% with V+LDAC versus 18.0% with P+LDAC, most commonly infections/infestations (V+LDAC, 17.1%; P+LDAC, 6.3%). Lack of OS benefit with V+LDAC versus P+LDAC may reflect increased early mortality with V+LDAC from myelosuppression and infections.This study was funded by Boehringer Ingelheim

    Labile plasma iron levels predict survival in patients with lower-risk Myelodysplastic syndromes

    Get PDF
    Red blood cell transfusions remain one of the cornerstones in supportive care of lower-risk patients with myelodysplastic syndromes. We hypothesized that patients develop oxidant mediated tissue injury through the formation of toxic iron species, caused either by red blood cell transfusions or by ineffective erythropoiesis. We analyzed serum samples from 100 lower-risk patients with myelodysplastic syndromes at six-month intervals for transferrin saturation, hepcidin-25, growth differentiation factor 15, soluble transferrin receptor, non-transferrin bound iron and labile plasma iron in order to evaluate temporal changes in iron metabolism and presence of potentially toxic iron species and their impact on survival. Hepcidin levels were low in 34 patients with ringed sideroblasts compared to 66 patients without. Increases of hepcidin and non-transferrin bound iron levels were visible early in follow-up of all transfusion dependent patient groups. Hepcidin levels significantly decreased over time in transfusion independent patients with ringed sideroblasts. Increased soluble transferrin receptor levels in transfusion-independent patients with ringed sideroblasts confirmed the presence of ineffective erythropoiesis and suppression of hepcidin production in these patients. Detectable labile plasma iron levels in combination with high transferrin saturation levels occurred almost exclusively in patients with ringed sideroblasts and all transfusion dependent patient groups. Detectable labile plasma iron levels in transfusion dependent patients without ringed sideroblasts were associated with decreased survival. IN CONCLUSION: toxic iron species occurred in all transfusion dependent patients and in transfusion independent patients with ringed sideroblasts. Labile plasma iron appeared to be a clinically relevant measure for potential iron toxicity and a prognostic factor for survival in transfusion dependent patients. This trial was registered at www.clinicaltrials.gov as #NCT00600860

    Immunophenotyping myelodysplastic neoplasms: the role of flow cytometry in the molecular classification era

    Get PDF
    The unique heterogenous landscape of myelodysplastic syndromes/neoplasms (MDS) has resulted in continuous redefinition of disease sub-entities, in view of the novel translational research data that have clarified several areas of the pathogenesis and the progression of the disease. The new international classifications (WHO 2022, ICC 2022) have incorporated genomic data defining phenotypical alterations, that guide clinical management of specific patient subgroups. On the other hand, for over a decade, multiparameter flow cytometry (MFC) has proven its value as a complementary diagnostic tool for these diseases and although it has never been established as a mandatory test for the baseline evaluation of MDS patients in international guidelines, it is almost universally adopted in everyday clinical practice for the assessment of suspected cytopenias through simplified scoring systems or elaborate analytical strategies for the detection of immunophenotypical dysplastic features in every hematopoietic cell lineage in the bone marrow (BM). In this review, we explore the clinically meaningful interplay of MFC data and genetic profiles of MDS patients, to reveal the currently existing and the potential future role of each methodology for routine clinical practice, and the benefit of the patients. We reviewed the existing knowledge and recent advances in the field and discuss how an integrated approach could lead to patient re-stratification and guide personalized management

    Prognostic impact of a suboptimal number of analyzed metaphases in normal karyotype lower-risk MDS

    Get PDF
    Conventional karyotype is one of the most relevant prognostic factors in MDS. However, about 50% of patients with MDS have a normal karyotype. Usually, 20-25 normal metaphases (nMP) are considered to be optimal to exclude small abnormal clones which might be associated with poor prognosis. This study evaluated the impact of examining a suboptimal number of metaphases in patients recruited to the EUMDS Registry with low and intermediate-1 risk according to IPSS. Only 179/1049 (17%) of patients with a normal karyotype had a suboptimal number of nMP, defined as less than 20 metaphases analyzed. The outcome (overall survival and progression-free survival) of patients with suboptimal nMP was not inferior to those with higher numbers of analyzed MP both in univariate and multivariate analyses. For patients with an abnormal karyotype, 224/649 (35%) had a suboptimal number of MP assessed, but this did not impact on outcome. For patients with a normal karyotype and suboptimal numbers of analyzable metaphases standard evaluation might be acceptable for general practice, but we recommend additional FISH-analyses or molecular techniques, especially in candidates for intensive interventions

    Integrating advanced analytical methods to assess epigenetic marks affecting response to hypomethylating agents in higher risk myelodysplastic syndrome

    Get PDF
    Background: Patients with higher-risk (HR) myelodysplastic syndrome (MDS), ineligible for allogeneic hematopoietic stem cell transplantation (alloHSCT), require prompt therapeutic interventions, such as treatment with hypomethylating agents (HMAs) to restore normal DNA methylation patterns, mainly of oncosuppressor genes, and consequently to delay disease progression and increase overall survival (OS). However, response assessment to HMA treatment relies on conventional methods with limited capacity to uncover a wide spectrum of underlying molecular events. Methods: We implemented liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess 5’ methyl-2’ deoxycytidine (5mdC), 5’ hydroxy-methyl-2’-deoxycytidine (5hmdC) levels and global adenosine/thymidine ([dA]/[T]) ratio in bone marrow aspirates from twenty-one HR MDS patients, pre- and post-HMA treatment. Additionally, targeted methylation analysis was performed by interpretation of NGS-methylation (MeD-seq) data obtained from the same patient cohort. Results: LC/MS-MS analysis revealed a significant hypomethylation status in responders (Rs), already established at baseline and a trend for further DNA methylation reduction post-HMA treatment. Non-responders (NRs) reached statistical significance for DNA hypomethylation only post-HMA treatment. The 5hmdC epigenetic mark was approximately detected at 37.5–40% among NRs and Rs, implying the impairment of the natural active demethylation pathway, mediated by the ten-eleven (TET) 5mdC dioxygenases. R and NR subgroups displayed a [dA]/[T] ratio &lt; 1 (0.727 − 0.633), supporting high frequences of 5mdC transition to thymidine. Response to treatment, according to whole genome MeD-seq data analysis, was associated with specific, scattered hypomethylated DMRs, rather than presenting a global effect across genome. MeD-seq analysis identified divergent epigenetic effects along chromosomes 7, 9, 12, 16, 18, 21, 22, X and Y. Within statistically significant selected chromosomal bins, genes encoding for proteins and non-coding RNAs with reversed methylation profiles between Rs and NRs, were highlighted. Conclusions: Implementation of powerful analytical tools to identify the dynamic DNA methylation changes in HR MDS patients undergoing HMA therapy demonstrated that LC-MS/MS exerts high efficiency as a broad-based but rapid and cost-effective methodology (compared to MeD-seq) to decode different perspectives of the epigenetic background of HR MDS patients and possess discriminative efficacy of the response phenotype to HMA treatment.</p

    Fetal hemoglobin induction in azacytidine responders enlightens methylation patterns related to blast clearance in higher-risk MDS and CMML

    Get PDF
    Background: As new treatment options for patients with higher-risk myelodysplastic syndromes are emerging, identification of prognostic markers for hypomethylating agent (HMA) treatment and understanding mechanisms of their delayed and short-term responses are essential. Early fetal hemoglobin (HbF) induction has been suggested as a prognostic indicator for decitabine-treated patients. Although epigenetic mechanisms are assumed, responding patients’ epigenomes have not been thoroughly examined. We aimed to clarify HbF kinetics and prognostic value for azacytidine treated patients, as well as the epigenetic landscape that might influence HbF re-expression and its clinical relevance. Results: Serial HbF measurements by high-performance liquid chromatography (n = 20) showed induction of HbF only among responders (p = 0.030). Moreover, HbF increase immediately after the first azacytidine cycle demonstrated prognostic value for progression-free survival (PFS) (p = 0.032, HR = 0.19, CI 0.24–1.63). Changes in methylation patterns were revealed with methylated DNA genome-wide sequencing analysis (n = 7) for FOG-1, RCOR-1, ZBTB7A and genes of the NuRD-complex components. Targeted pyrosequencing methodology (n = 28) revealed a strong inverse correlation between the degree of γ-globin gene (HBG2) promoter methylation and baseline HbF levels (p = 0.003, rs = − 0.663). A potential epigenetic mechanism of HbF re-expression in azacytidine responders was enlightened by targeted methylation analysis, through hypomethylation of site -53 of HBG2 promoter (p = 0.039, rs = − 0.504), which corresponds to MBD2-NuRD binding site, and to hypermethylation of the CpG326 island of ZBTB7A (p = 0.05, rs = 0.482), a known HbF repressor. These changes were associated to blast cell clearance (pHBG2 = 0.011, rs = 0.480/pZBTB7A = 0.026, rs = 0.427) and showed prognostic value for PFS (pZBTB7A = 0.037, HR = 1.14, CI 0.34–3.8). Conclusions: Early HbF induction is featured as an accessible prognostic indicator for HMA treatment and the proposed potential epigenetic mechanism of HbF re-expression in azacytidine responders includes hypomethylation of the γ-globin gene promoter region and hypermethylation of the CpG326 island of ZBTB7A. The association of these methylation patterns with blast clearance and their prognostic value for PFS paves the way to discuss in-depth azacytidine epigenetic mechanism of action. Graphical abstract: (Figure presented.)</p
    corecore