422 research outputs found

    Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field

    Get PDF
    We examine the motion in Schwarzschild spacetime of a point particle endowed with a scalar charge. The particle produces a retarded scalar field which interacts with the particle and influences its motion via the action of a self-force. We exploit the spherical symmetry of the Schwarzschild spacetime and decompose the scalar field in spherical-harmonic modes. Although each mode is bounded at the position of the particle, a mode-sum evaluation of the self-force requires regularization because the sum does not converge: the retarded field is infinite at the position of the particle. The regularization procedure involves the computation of regularization parameters, which are obtained from a mode decomposition of the Detweiler-Whiting singular field; these are subtracted from the modes of the retarded field, and the result is a mode-sum that converges to the actual self-force. We present such a computation in this paper. There are two main aspects of our work that are new. First, we define the regularization parameters as scalar quantities by referring them to a tetrad decomposition of the singular field. Second, we calculate four sets of regularization parameters (denoted schematically by A, B, C, and D) instead of the usual three (A, B, and C). As proof of principle that our methods are reliable, we calculate the self-force acting on a scalar charge in circular motion around a Schwarzschild black hole, and compare our answers with those recorded in the literature.Comment: 38 pages, 2 figure

    Dual Brane Pairs, Chains and the Bekenstein-Hawking Entropy

    Full text link
    A proposal towards a microscopic understanding of the Bekenstein-Hawking entropy for D=4 spacetimes with event horizon is made. Since we will not rely on supersymmetry these spacetimes need not be supersymmetric. Euclidean D-branes which wrap the event horizon's boundary will play an important role. After arguing for a discretization of the Euclidean D-brane worldvolume based on the worldvolume uncertainty relation, we count chainlike excitations on the worldvolume of specific dual Euclidean brane pairs. Without the need for supersymmetry it is shown that one can thus reproduce the D=4 Bekenstein-Hawking entropy and its logarithmic correction.Comment: 14 pages, 1 figur

    Nonzero orbital angular momentum superfluidity in ultracold Fermi gases

    Full text link
    We analyze the evolution of superfluidity for nonzero orbital angular momentum channels from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein condensation (BEC) limit in three dimensions. First, we analyze the low energy scattering properties of finite range interactions for all possible angular momentum channels. Second, we discuss ground state (T=0T = 0) superfluid properties including the order parameter, chemical potential, quasiparticle excitation spectrum, momentum distribution, atomic compressibility, ground state energy and low energy collective excitations. We show that a quantum phase transition occurs for nonzero angular momentum pairing, unlike the s-wave case where the BCS to BEC evolution is just a crossover. Third, we present a gaussian fluctuation theory near the critical temperature (T=TcT = T_{\rm c}), and we analyze the number of bound, scattering and unbound fermions as well as the chemical potential. Finally, we derive the time-dependent Ginzburg-Landau functional near TcT_{\rm c}, and compare the Ginzburg-Landau coherence length with the zero temperature average Cooper pair size.Comment: 28 pages and 24 figure

    Physical instrumental vetoes for gravitational-wave burst triggers

    Full text link
    We present a robust strategy to \emph{veto} certain classes of instrumental glitches that appear at the output of interferometric gravitational-wave (GW) detectors.This veto method is `physical' in the sense that, in order to veto a burst trigger, we make use of our knowledge of the coupling of different detector subsystems to the main detector output. The main idea behind this method is that the noise in an instrumental channel X can be \emph{transferred} to the detector output (channel H) using the \emph{transfer function} from X to H, provided the noise coupling is \emph{linear} and the transfer function is \emph{unique}. If a non-stationarity in channel H is causally related to one in channel X, the two have to be consistent with the transfer function. We formulate two methods for testing the consistency between the burst triggers in channel X and channel H. One method makes use of the \emph{null-stream} constructed from channel H and the \emph{transferred} channel X, and the second involves cross-correlating the two. We demonstrate the efficiency of the veto by `injecting' instrumental glitches in the hardware of the GEO 600 detector. The \emph{veto safety} is demonstrated by performing GW-like hardware injections. We also show an example application of this method using 5 days of data from the fifth science run of GEO 600. The method is found to have very high veto efficiency with a very low accidental veto rate.Comment: Minor changes, To appear in Phys. Rev.

    Thermodynamic curvature measures interactions

    Full text link
    Thermodynamic fluctuation theory originated with Einstein who inverted the relation S=kBlnΩS=k_B\ln\Omega to express the number of states in terms of entropy: Ω=exp(S/kB)\Omega= \exp(S/k_B). The theory's Gaussian approximation is discussed in most statistical mechanics texts. I review work showing how to go beyond the Gaussian approximation by adding covariance, conservation, and consistency. This generalization leads to a fundamentally new object: the thermodynamic Riemannian curvature scalar RR, a thermodynamic invariant. I argue that R|R| is related to the correlation length and suggest that the sign of RR corresponds to whether the interparticle interactions are effectively attractive or repulsive.Comment: 29 pages, 7 figures (added reference 27

    Frequency shift keying in vortex-based spin torque oscillators

    Full text link
    Vortex-based spin-torque oscillators can be made from extended spin valves connected to an electrical nanocontact. We study the implementation of frequency shift keying modulation in these oscillators. Upon a square modulation of the current in the 10 MHz range, the vortex frequency follows the current command, with easy identification of the two swapping frequencies in the spectral measurements. The frequency distribution of the output power can be accounted for by convolution transformations of the dc current vortex waveform, and the current modulation. Modeling indicates that the frequency transitions are phase coherent and last less than 25 ns. Complementing the multi-octave tunability and first-class agility, the capability of frequency shift keying modulation is an additional milestone for the implementation of vortex-based oscillators in RF circuit.Comment: 6 pages, 5 figure

    Schrodinger equation for the one particle density matrix of thermal systems: An alternative formulation of Bose-Einstein condensation

    Get PDF
    We formulate a linear Schrodinger equation with the temperature-dependent potential for the one-particle density matrix and obtain the condensation temperature of the Bose-Einstein condensate from a bound-state condition for the Schrodinger equation both with and without the confining trap. The results are in very good agreement with those of the full statistical physics treatment. This is an alternative to the Bose-Einstein condensation in the standard ideal Bose gas treatment.Comment: 4 pages, 2 figure

    A right-handed isotropic medium with a negative refractive index

    Full text link
    The sign of the refractive index of any medium is soley determined by the requirement that the propagation of an electromagnetic wave obeys Einstein causality. Our analysis shows that this requirement predicts that the real part of the refractive index may be negative in an isotropic medium even if the electric permittivity and the magnetic permeability are both positive. Such a system may be a route to negative index media at optical frequencies. We also demonstrate that the refractive index may be positive in left-handed media that contain two molecular species where one is in its excited state.Comment: 4.1 pages, 4 figures, submitted to Physical Review Letter

    Bogoliubov modes of a dipolar condensate in a cylindrical trap

    Full text link
    The calculation of properties of Bose-Einstein condensates with dipolar interactions has proven a computationally intensive problem due to the long range nature of the interactions, limiting the scope of applications. In particular, the lowest lying Bogoliubov excitations in three dimensional harmonic trap with cylindrical symmetry were so far computed in an indirect way, by Fourier analysis of time dependent perturbations, or by approximate variational methods. We have developed a very fast and accurate numerical algorithm based on the Hankel transform for calculating properties of dipolar Bose-Einstein condensates in cylindrically symmetric traps. As an application, we are able to compute many excitation modes by directly solving the Bogoliubov-De Gennes equations. We explore the behavior of the excited modes in different trap geometries. We use these results to calculate the quantum depletion of the condensate by a combination of a computation of the exact modes and the use of a local density approximation

    Dislocation core field. I. Modeling in anisotropic linear elasticity theory

    Get PDF
    Aside from the Volterra field, dislocations create a core field, which can be modeled in linear anisotropic elasticity theory with force and dislocation dipoles. We derive an expression of the elastic energy of a dislocation taking full account of its core field and show that no cross term exists between the Volterra and the core fields. We also obtain the contribution of the core field to the dislocation interaction energy with an external stress, thus showing that dislocation can interact with a pressure. The additional force that derives from this core field contribution is proportional to the gradient of the applied stress. Such a supplementary force on dislocations may be important in high stress gradient regions, such as close to a crack tip or in a dislocation pile-up
    corecore