research

Bogoliubov modes of a dipolar condensate in a cylindrical trap

Abstract

The calculation of properties of Bose-Einstein condensates with dipolar interactions has proven a computationally intensive problem due to the long range nature of the interactions, limiting the scope of applications. In particular, the lowest lying Bogoliubov excitations in three dimensional harmonic trap with cylindrical symmetry were so far computed in an indirect way, by Fourier analysis of time dependent perturbations, or by approximate variational methods. We have developed a very fast and accurate numerical algorithm based on the Hankel transform for calculating properties of dipolar Bose-Einstein condensates in cylindrically symmetric traps. As an application, we are able to compute many excitation modes by directly solving the Bogoliubov-De Gennes equations. We explore the behavior of the excited modes in different trap geometries. We use these results to calculate the quantum depletion of the condensate by a combination of a computation of the exact modes and the use of a local density approximation

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019