10 research outputs found

    The Influence of Dihedral Angle Error Stability on Beam Deviation for Hollow Retro-Reflectors

    Get PDF
    Retro-reflectors consist of three reflective optical surfaces, which are oriented to reflect the input beam by 180 . For retro-reflector components, it is common to specify an angular beam deviation tolerance, or rather the deviation from the exact 180 def return direction. Precision-aligned retro-reflectors provide 180 deg beam deviation with tolerances on the order of an arcsecond. It is well known that the performance of the retro-reflector depends on the ability to precisely orient the reflective surfaces at mutually perpendicular angles. Precision assembly is therefore critical to ensure highly accurate beam deviation. The dihedral angle errors, and hence the reflected beam deviation, can be measured for the retro-reflector after fabrication, typically by using interferometric techniques. Yet, what is not commonly reported for a fabricated retro-reflector is the stability of the angular beam deviation. For instance, thermo-mechanical effects of the components will contribute to variations in the return beam direction. While the actual stability is design-specific one can develop a mathematical representation for the expected change in the reflected beam direction as a function of the variation in the dihedral angle errors. Presented here is a mathematical formulation for a hollow retro-reflector's beam deviation as a function of the dihedral angle error stability

    Beaconless Optical Communication System Constraints

    Get PDF
    Deep-space optical communication will enable increased science return and public engagement for robotic and manned missions. The IROC project is studying a beaconless optical communication system for Mars data downlink. A star tracker provides the optical communications pointing information in place of an uplink targeting beacon. The configuration presented in this paper includes a star tracker that is aligned co-boresighted with the optical communication axis. This co-boresight configuration was not discussed in prior work, as it was assumed that large Sun-Probe-Earth keep-out angle requirements for operation of the star tracker would cause significant communication outages. In this paper it is shown that the use of an optimal mechanical mounting angle combined with an advanced star tracker has the capability to yield up to 92% communication availability for an example five-year Mars mission

    Multidisciplinary Optimization of Urban-Air-Mobility Class Aircraft Trajectories with Acoustic Constraints

    Get PDF
    The design and analysis of on-demand mobility class vehicles will require thorough acoustic analysis to ensure that more numerous aircraft can operate in densely populated areas without causing excessive levels of noise. This work is a step towards a comprehensive ODM vehicle analysis capability. The authors use 6DOF equations of motion to model the electric quad-rotor concept developed by NASA's Revolutionary Vertical Lift Technologies program. As a first step towards acoustic analysis, this trajectory is coupled to an acoustic model that tracks the sound pressure level perceived by an acoustic observer on the ground. The results show that the approach is successful in finding trajectories that minimize total propulsive impulse while obeying limits imposed on the sound pressure level. Future work will involve adding acoustic analysis of increasing fidelity and tying the resulting trajectories to the performance of the electric propulsion system

    Electrical Cable Design for Urban Air Mobility Aircraft

    Get PDF
    Urban Air Mobility (UAM) describes a new type of aviation focused on efficient flight within urban areas for moving people and goods. There are many different configurations of UAM vehicles, but they generally use an electric motor driving a propeller or ducted fan powered by batteries or a hybrid electric power generation system. Transmission cables are used to move energy from the storage or generation system to the electric motors. Though terrestrial power transmission cables are well established technology, aviation applications bring a whole host of new design challenges that are not typical considerations in terrestrial applications. Aircraft power transmission cable designs must compromise between resistance-per-length, weight-per-length, volume constraints, and other essential qualities. In this paper we use a multidisciplinary design optimization to explore the sensitivity of these qualities to a representative tiltwing turboelectric UAM aircraft concept. This is performed by coupling propulsion and thermal models for a given mission criteria. Results presented indicate that decreasing cable weight at the expense of increasing cable volume or cooling demand is effective at minimizing maximum takeoff weight (MTO). These findings indicate that subsystem designers should update their modeling approach in order to contribute to system-level optimality for highly-coupled novel aircraft. Mobility (UAM) vehicles have the potential to change urban and intra-urban transport in new and interesting ways. In a series of two papers Johnson et al.1 and Silva et al.2 presented four reference vehicle configurations that could service different niches in the UAM aviation category. Of those, this paper focuses on the Vertical Take-off and Landing (VTOL) tiltwing configuration shown in Figure 1. This configuration uses a turboelectric power system, feeding power from a turbo-generator through a system of transmission cables to four motors spinning large propellers on the wings. Previous work on electric cable subsystems leaves much yet to be explored, especially in the realm of subsystem coupling. Several aircraft optimization studies1, 3, 4 only considered aircraft electrical cable weight and ignored thermal effects. Electric and hybrid-electric aircraft studies by Mueller et al.5 and Hoelzen et al.6 selected a cable material but did not investigate alternative materials. Advanced cable materials have been examined by a number of authors: Alvarenga7 examined carbon nanotube (CNT) conductors for low-power applications. De Groh8, 9 examined CNT conductors for motor winding applications. Behabtu et al.,10 and Zhao et al.11 examined CNT conductors for a general applications. There were some studies that examined the thermal effects of cables but they did not allow the cable material to change; El-Kady12 optimized ground-cable insulation and cooling subject constraints. Vratny13 selected cable material based on vehicle power demand, and required resulting cable heat to be dissipated by the Thermal Management System (TMS). None of these previous studies allowed for the selection of the cable material based on a system level optimization goal. Instead, they focused on sub-system optimality such as minimum weight, which comes at the expense of incurring additional costs for other subsystems. Dama14 selected overhead transmission line materials using a weighting function and thermal constraints. However, that work was not coupled with any aircraft subsystems like a TMS. The traditional aircraft design approach, which relies on assembling groups of optimal subsystems, breaks down when considering novel aircraft concepts like the tiltwing vehicle. In a large part, this is because novel concepts have a much higher degree of interaction or coupling between subsystems. For example, when a cable creates heat, this heat needs to be dissipated by the TMS, which needs power supplied by the turbine, and delivering the power creates more heat. The cable, the TMS, and the turbine are all coupled. A change to one subsystem will affect all the other subsystems, much to the consternation of subsystem design experts. Multidisciplinary optimization is the design approach that can address these challenges. However, to fully take advantage of this, we must change the way we think about subsystem design. Specifically, we must move away from point design, and focus on creating solution spaces. The work presented in this paper uses the multidisciplinary optimization approach with aircraft level models to study the system-level sensitivity of cable traits: weight-per-length and resistance-per-length. Additionally, we examined the effects of vehicle imposed volume constraints on these traits. This is useful for three purposes: (1) to demonstrate a framework that can perform a coupled analysis between the aircraft thermal and propulsion systems, (2) to provide a method by which future cable designs can be evaluated against each other given a system-level design goal, (3) to provide insight into what cable properties may be promising for future research. This last element is explored given the caveat that the models contained in this analysis do not represent high-fidelity systems. Thus, while we can demonstrate coupling in between systems, the exact system-level sensitivity to a given parameter may change if a subsystem model or the assumptions governing that model change. The organization of this paper is as follows, in Sec II we outline a method to combine the VTOL vehicle design and cable information in order to produce cables sensitivity studies. Results analysis and discussion are contained in Sec III. Conclusions are presented in Sec IV

    Extending the Capabilities of Closed-loop Distributed Engine Control Simulations Using LAN Communication

    Get PDF
    Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework

    Load Flow Analysis with Analytic Derivatives for Electric Aircraft Design Optimization

    Get PDF
    Many of the aircraft concepts of the future are exploring the use of hybrid-, turbo- or all-electric propulsion systems to improve performance and decrease environmental impacts. These aircraft concepts range from small rotorcraft for urban air mobility to conventional commercial transports to large blended wing body designs. Developing the conceptual design for these vehicles presents a challenge, however, as traditional aircraft design tools often were not developed to handle these unique propulsion system architectures. Previous studies on these vehicles have therefore relied on relatively simple models of the electrical transmission and distribution system. This paper presents the development of a hybrid AC-DC load flow (or power flow) analysis capability to enhance the conceptual design of these concept vehicles. Specifically, the desire was to create a load flow analysis capability within the OpenMDAO framework that is also being used to develop a set of compatible tools for rapid optimization of conceptual designs. This load flow analysis capability is unique in its flexible object-oriented structure and implementation of analytic derivatives to facilitate the use of solvers and gradient based optimization in the design process. The developed hybrid load flow analysis capability is first verified against a published 13-bus example then used to model the electrical distribution system for a turbo-electric tiltwing aircraft

    Pointing System Simulation Toolbox with Application to a Balloon Mission Simulator

    Get PDF
    The development of attitude estimation and pointing-control algorithms is necessary in order to achieve high-fidelity modeling for a Balloon Mission Simulator (BMS). A pointing system simulation toolbox was developed to enable this. The toolbox consists of a star-tracker (ST) and Inertial Measurement Unit (IMU) signal generator, a UDP (User Datagram Protocol) communication le (bridge), and an indirect-multiplicative extended Kalman filter (imEKF). This document describes the Python toolbox developed and the results of its implementation in the imEKF

    A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Get PDF
    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system

    Static Controls Performance Tool for Lunar Landers

    Get PDF
    This document presents a static analysis tool used to evaluate the controllability of Lunar landers. This was created as part of the NASA Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program. This tool is capable of accepting typical design information such as location and direction of thrusters, maximum thruster forces, gravity vectors, and center of mass locations. The tool evaluates how far the center of gravity can move from its starting position while still maintaining control. This type of analysis is intended to support results produced by time domain simulations. The code created for this project was implemented in Python, and it was designed to be integrated into systems level optimization tools to yield first-cut results on optimal thruster placement

    Propulsion System Optimization for a Turboelectric Tiltwing Urban Air Mobility Aircraft

    No full text
    An emerging potential market within the aviation industry is short, frequent air taxi flights within the urban airspace. These air taxis (also called urban air mobility or UAM vehicles) are envisioned to be vertical take-o and landing designs which are capable of carrying 1 to 15 passengers in an intra-urban environment with less than 50 nautical miles of range. Numerous vehicle conceptual designs have been proposed by various industry and government organizations to fulfill these potential missions. These concepts are enabled by recent advancements in a number of areas including propulsion and power systems. While new technologies are making these vehicles possible, this new UAM design space is large, unexplored, and multidisciplinary in nature. New challenges exist in identifying and creating optimized designs for these unique vehicles with new propulsion technologies. This work presents the development of a suite of propulsion system analysis tools, which when coupled together, can improve the multidisciplinary conceptual design and optimization of UAM vehicle propulsion systems. These analysis tools are then applied to the design optimization of a turboelectric propulsion system for a notional UAM tiltwing concept. The optimization demonstration for this vehicle shows how a tightly-coupled multidisciplinary design can be developed which considers both physical design characteristics and operating schedules. Furthermore, the results explore trade-o s in the thermal management system design and how those trade-o s impact the overall vehicle
    corecore