
NASA/TM—2018-219913

October 2018

An Erratum was added to this report March 2019.

Eliot D. Aretskin-Hariton, Calvin R. Robinson, and Drayton W. Munster
Glenn Research Center, Cleveland, Ohio

Mike R. Hannan
Marshall Space Flight Center, Huntsville, Alabama

Static Controls Performance Tool for Lunar Landers

https://ntrs.nasa.gov/search.jsp?R=20180007356 2019-08-31T18:12:54+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/161997975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server–Registered
(NTRS Reg) and NASA Technical Report Server–
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c
and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI
Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:
NASA STI Program

 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

NASA/TM—2018-219913

October 2018

An Erratum was added to this report March 2019.

Eliot D. Aretskin-Hariton, Calvin R. Robinson, and Drayton W. Munster
Glenn Research Center, Cleveland, Ohio

Mike R. Hannan
Marshall Space Flight Center, Huntsville, Alabama

Static Controls Performance Tool for Lunar Landers

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

Available from

Level of Review: This material has been technically reviewed by technical management.

This work was conducted as part of Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program in
conjunction with Astrobotic Technology. NASA’s Lunar CATALYST initiative is establishing multiple no-funds-exchanged Space
Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of these SAAs is to encourage the development
of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface.
Editing support for this document was provided by Thomas F. Lavelle from Alcyon Technical Services.

Erratum

Issued March 2019 for

NASA/TM—2018-219913
Static Controls Performance Tool for Lunar Landers

Eliot D. Aretskin-Hariton, Calvin R. Robinson, and Drayton W. Munster
Glenn Research Center, Cleveland, Ohio

Mike R. Hannan
Marshall Space Flight Center, Huntsville, Alabama

October 2018

Page 10, Section 3, first paragraph: Remove the words “TBD Restore” from the first sentence so the sentence reads:
After organizing the equality, inequality, and optimization matrices, the simplex method is then applied using the scipy.optimize.
linprog() library in PythonTM.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

Available electronically at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Abstract
This paper presents a static analysis tool used to evaluate the controllability of

Lunar landers. This was created as part of the NASA Lunar CATALYST program.
This tool is capable of accepting typical design information such as location and
direction of thrusters, maximum thruster forces, gravity vectors, and center of mass
locations. The tool evaluates how far the center of gravity can move from its starting
position while still maintaining control. This analysis is intended to support results
produced by time domain simulations.

Nomenclature
Acronyms

ACS attitude control system
CG center of gravity
CoM center of mass
Lunar CATALYST Lunar Cargo Transportation and Landing by Soft Touchdown
PWM pulse width modulation
SC spacecraft

Symbols

CGΔmax maximum allowable change in the location of the center of
gravity

Isp Specific Impulse
M number of attitude control system thrusters on the system
N number of primary thrusters on the system

1 Introduction
This paper presents the design of a tool that can assess the controllability of lunar

landers. This tool is compatible with PythonTM3.x and is designed to determine
where the center of gravity (CG) of the spacecraft (SC) can be placed to ensure
that the lander remains stable. This is performed by evaluating thruster locations,
orientation, and thruster force through a static equilibrium approach where forces
and moments are balanced. Solving this problem is accomplished by using linear
programming and image processing techniques. The problem the tool was applied
to was lunar landers, however, the tool can be changed to accept other landing
scenarios. The tool can present a first cut at evaluating the controllability of a
lander system during two phases of descent: vertical descent and hover (Figure 1).
Both of these phases have different constraints on the static balance, which are
inputs to the tool. The CG location is an output of this analysis because the CG
can be altered by moving the location of installed equipment on the lander. This

NASA/TM—2018-219913 1

analysis is meant to act as supporting information to dynamic, time domain analysis,
which includes additional effects such as control algorithm design. Because static
analysis is computationally inexpensive, it can also provide a useful component in
parametric design for systems that are highly coupled. Inputs to the tool for static
moment and force balancing and the construction of constraints will be described
in Section 2. Calculations for linear programming and image processing techniques
are described in Section 3. Simulation output information is detailed in Section 4.
Additionally, a sample problem is provided to demonstrate the capability of the tool
in Section 5. Lastly, conclusions are presented in Section 6.

Figure 1: Key descent phases for lunar lander. Focus of tool is on last part of
trajectory, vertical descent, and landing (blue circle). [1]

2 Simulation Inputs
This section discusses the types of inputs required for tool operation and the

calculations that happen inside the tool. This is covered for two cases: hover and
vertical descent. Hover has two subsections: analysis where the primary thrusters
can also provide torque through off-pulsing (Section 2.2.2) and scenarios without
off-pulsing (Section 2.2.3). The vertical descent phase (Section 2.2.4) does not have
this distinction. The implementation of vertical descent for this study sets the
primary thrusters to full power and prevents them from supplying control torque or
off-pulsing.

The first case analyzed is hover with off-pulsing, meaning that the main engines
can be used to supply control torque and balance the moments (Section 2.2.2).
Hover without off-pulsing is where thrusters can be throttled higher and lower but
they cannot be actuated individually for control torque creation (Section 2.2.3). In
the vertical descent case, described in Section 2.2.4, the main thrusters are set to
maximum power and cannot be used to balance the CG.

2.1 Variables and Coordinates
Required input parameters for the tool are listed in Table 1. Internal variables

used by the tool and optional inputs are listed in Tables 2 and 3. The names
of those parameters will be used throughout the rest of the text. The coordinate
systems used in this paper include a SC local frame and a CG frame as shown in
Figure 2. The SC frame is introduced because most SC will be designed without

NASA/TM—2018-219913 2

knowing where the CG is located until later in the design process. Thus, the SC
frame may be centered on the axis of symmetry, but not necessarily where the CG is
located. The CG frame has the x-axis aligned with the gravity vector, which points
along the negative x-axis. These frames are parallel to each other, but may have
translational offset. An example of this translational offset is shown in Figure 2.
There is no rotation between these coordinate systems, and thus this code is not
currently designed for analysis at the start of powered descent, where the gravity
vector and the CG frame are not aligned. If a future user wishes to inject a rotation
between these coordinate systems, one additional input of a quaternion describing
the rotation between the two coordinate frames would suffice.

The thrust vector input value for this analysis corresponds with the the direction
of exhaust gases. This is 180◦opposite of the force the thruster imparts on the SC.
Inside the tool, the input value is rotated to become the force imparted on the SC.

Figure 2: Example coordinate frame showing spacecraft (SC) frame and parallel
center of gravity (CG) frame. Both frames aligned with gravitational attraction
vector, which acts in negative x-axis. Frames are related with each other through
translation but not rotation. [1]

Table 1: SIMULATION REQUIRED INPUTS

Variable name Description Size Coordinates Units
ThrustPrimPos SC Position of primary thrusters Na × 3 SC local m
ThrustPrimOri Orientation of primary thrusters N × 3 SC and CG m
ThrustACSPos SC Position of ACS thrusters M b × 3 SC local m
ThrustACSOri Orientation of ACS thrusters M × 3 SC and CG m
GforcePos SC CoMc of the spacecraft (SC) 1 × 3 SC local m
MaxPrim Maximum thrust value of

N primary thrusters N × 1 NA N
MaxACS Maximum thrust value of

M ACS thrusters M × 1 NA N
SCMass Mass of the SC 1 × 1 NA kg
AccGrav Acceleration of the SC

due to gravity 1 × 1 NA m/s2

aNumber of primary thrusters.
bNumber of attitude control system (ACS) thrusters.
cCenter of mass of the SC.

NASA/TM—2018-219913 3

Table 2: SIMULATION INTERMEDIATE VARIABLES

Variable name Description Size Coordinates
Thrusters SC Position and orientation of

primary and ACS thrusters (N + M) × 6 SC local
Thrusters CG Position and orientation of

primary and ACS thrusters (N + M) × 6 CG frame
ThrustPrim SC Position and orientation of

primary thrusters N × 6 SC local
ThrustPrim CG Position and orientation of

primary thrusters N × 6 CG frame
ThrustPrimPos SC Position of primary thrusters N × 3 SC local
ThrustPrimPos CG Position of primary thrusters N × 3 CG frame
ThrustPrimOri Orientation of primary thrusters N × 3 SC and CG
ThrustACS SC Position and orientation of

ACS thrusters M × 6 SC local
ThrustACS CG Position and orientation of

ACS thrusters M × 6 CG frame
ThrustACSPos SC Position of ACS thrusters M × 3 SC local
ThrustACSPos CG Position of ACS thrusters M × 3 CG frame
ThrustACSOri Orientation of ACS thrusters M × 3 SC and CG
Gforce SC CoM and orientation of the

gravity force 1 × 6 SC local
Gforce CG CoM and orientation of the

gravity force 1 × 6 CG frame
GforcePos SC CoM of the SC 1 × 3 SC local
GforcePos CG CoM of the SC = [0, 0, 0] 1 × 3 CG frame
GforceOri Orientation of the gravity force vector 1 × 3 NA
ThrustMoment CG Unit vector moments of

all thruster elements (N + M) × 6 CG frame
CGΔmax Output: max. allowable change

in CG location 1 × 1 NA

2.2 Hover With Off-Pulsing
Hover is the most restrictive of all the scenarios, and thus imposes the largest

number of constraints on the system. In hover, all moments and forces must be zero.
This keeps the craft in the same location without tilting or tumbling. However, the
overall solution space on CG location will be the largest, due to the ability to use
relatively large primary thrusters to create torque. Hover has the goal of minimizing
primary thruster and ACS usage. The constraints used for hover are as follows:

ΣForces = 0

ΣMoments = 0

Off-pulsing is a technique that can be used when an SC has several main engines.
The thrust from each of the main engines is allowed to vary relative to each other.
This allows the main engines to be used to contribute to torque balance as well as
thrust. Allowing main engine differential thrusting allows for easier compensation
when the thrusters are misaligned.

NASA/TM—2018-219913 4

By using user input information on thruster location, direction, and craft weight
(see: Table 1), off-pulsing is expressed as a series of linear equations, which can then
be solved using the simplex method as described in Section 3.

2.2.1 Equality Constraints

The general equation describing the equality constraints is

Aeq · x = Beq

where Aeq describes the forces and moments acting on the SC, x is a vector of optimal
thruster powers, and Beq describes the constraints on the forces and moments, which
is a function of the scenario. In the problems described in this paper, Aeq and Beq

are described as functions of the input values and we solve for x. Inputs to the
function include a guess of where the CG is located. If there is no x value that
solves the equation, then the given CG location is not feasible. The Aeq matrix is
built from the individual thruster forces as follows:

Thrusters SC =
[

ThrustACSPos SC ThrustACSOri

ThrustPrimPos SC ThrustPrimOri

]

This information is translated into the CG frame. This affects the position part of
the matrix, not the orientation section. The orientation section of the matrix is left
as zeros:

Thrusters CG = Thrusters SC −
[

GforcePos SC 0
]

The matrix that represents the moment vectors of each element in the thrust matrix
is now constructed. This is represented as the cross product between the thruster
location and the thruster orientation:∗

ΣMCG = Thrusters CG[:, 0 : 2] × Thrusters CG[:, 3 : 5]
∗The notation in this section uses standard PythonTMindexing nomenclature.

Table 3: SIMULATION OPERATIONAL INPUTS

Variable Name Description Size Default
Resolution The accuracy to which

the minimum CG is determined 1 × 1 1 × 10−3 (meters)
GforceOri Orientation of the gravity force

unit vector (CG frame) 1 × 3 [1, 0, 0]
acs thrust % Specific ACS thrust fractions

to evaluate 1 × T d [0.25]
missionPhase Specifies mission phase,

HOVER NO OFF PULSE
HOVER OFF PULSE,
TERMINAL DESCENT String TERMINAL DESCENT

dNumber of ACS thrust fractions to evaluate.

NASA/TM—2018-219913 5

Next, create an expression for the sum of the forces in the three axes.

ΣFxyz = Thrusters CG[:, 3 : 5]

These two elements combine to form the moment and force balance equation:

Aeq =
[

ΣMCG

ΣFxyz

]

Then, form the Beq matrix using information from the SC mass acceleration unit
vector. For hover, the force and moment balance sum to zero. The gravitational
acceleration on Aeq term is moved to the other side of the equation in this imple-
mentation Beq , where

Beq =
[

03×1
−GforceOri · SCMass · AccGrav

]

Substituting the Aeq and Beq values this becomes:
[

ΣMCG

ΣFxyz

]
· x =

[
03×1

−GforceOri · SCMass · AccGrav

]

Where x is a column vector of size [(M + N) × 1] and represents the thrust level of
the different thrusters. The number of ACS thrusters is given by M and the number
of primary thrusters is indicated by N .

x =
[

ACSForce

PrimaryForce

]

2.2.2 Inequality Constraints

Inequality constraints are built using maximum thruster values as follows:

Aineq · x <= Bineq

where Aineq is the identity matrix,

Aineq = IM+N×M+N

and

Bineq =
[

MaxACS

MaxPrim

]

2.2.3 Optimization Function

The generic optimization function seeks to find x such that f = C · x is min-
imized, where C is a vector of weights and x is column vector of thruster power.
In the hover case, it is desirable to minimize fuel used to maintain hover. The
PythonTMscipy.optimize.linprog() library will be used to solve this problem.

NASA/TM—2018-219913 6

This library requires that the input functions must be linear. Additionally, the ini-
tial starting point (e.g., the first point evaluated by the function) must be in the
valid solution space. Thus, the initial CG guess provided must be in the solution
space or the library will fail to solve.

FuelConsumed =
i=M+N∑

i=1
Ci · xi

where N is the number of primary thrusters and M is the number of ACS thrusters.
The row vector C represents the coefficients of how the x values are weighted. In
the simple case where all thrusters are equally efficient, the coefficient values are all
ones to indicate that the thrusters have equal weight. This is because it does not
matter if thruster A is used more than thruster B, just that overall all thrusters are
being used as little as possible. For this case, C becomes

C = [11, 12...1M+N]

If the specific impulse (ISP) of the thruster is supplied, this can be used as the
coefficients for the C vector. This will give preference to using thrusters with a high
ISP . While the thrusters that will be used may change, the maximum allowable
change in the CG CGΔmax will stay the same. This is because CGΔmax typically
forces many of the thrusters to fire at 100 percent duty cycle. A system that includes
ISP as the weighting function would have the following C vector:

C =
[

1
ISP,1

, 1
ISP,2

..., 1
ISP,M+N

]
The tool does not currently implement the ISP option.

2.3 Hover Without Off-Pulsing
Additional equality constraints are created if the primary thrusters must all fire

together at the same thrust level. The terminology used to describe this is called
without off-pulsing, where off-pulsing indicates that the primary engines can fire
independently at different thrust levels. Thus, without off-pulsing means that the
primary engines cannot fire independently. The controllability suffers as a result
since the main engines can no longer be used for torque balance. This causes the
allowable CG offset to shrink when compared to cases with off-pulsing.

2.3.1 Equality Constraints

Implementation of systems without off-pulsing requires constructing additional
equality constraints and combining with equality constraints already created in
Section 2.2.2. This is performed by constructing a series of equations where each
main thruster is set as equal to the other main thrusters.⎡

⎢⎢⎢⎢⎣
T1main = T2main

T2main = T3main
...

TN−1main = TNmain

⎤
⎥⎥⎥⎥⎦

NASA/TM—2018-219913 7

None of the ACS thrusters have these types of constraints so they remain unchanged.
This can be structured as an equality constraint, which will be added to Aeq:

Tmaineq =

⎡
⎢⎢⎢⎢⎣ 0M−1×N

1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

...
...

0 0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎦

The corresponding Beq constraints are all zero. These Tmaineq are added to Aeq

and Beq from Section 2.2.2 to create the whole equality matrix for this case:

⎡
⎢⎣ ThrustMoment CG

ThrustOri

Tmaineq

⎤
⎥⎦ · x =

⎡
⎢⎣ 03×1

−GforceOri · SCMass · AccGrav

0M+N

⎤
⎥⎦

2.3.2 Inequality Constraints

Inequality constraints are the same as those for hover with off-pulsing as de-
scribed in Section 2.2.2.

2.3.3 Optimization Function

The optimization function is the same as those for hover with off-pulsing as
described in Section 2.2.2. This is because of the continued desire to minimize fuel
use.

2.4 Vertical Descent
Vertical descent is a less restrictive case as compared to hover. There is an

allowed force imbalance along the x-axis (vertical axis). This enables the craft to
accelerate (slow down) along this axis. This case is marked by the need to use
primary thrusters at 100 percent thrust. This removes off-pulsing as a mechanism
of control because no solutions are allowed where any primary thrusters are allowed
to operate at less than 100 percent. Equations governing the x-axis are the only
ones modified to remove constraints. To enable vertical descent, some of the equality
constraints will be adjusted as compared to those in Section 2.2.2. Vertical descent
has a goal of maximizing primary thruster usage while minimizing ACS thruster
usage. Therefore, the cost function must also be modified. The constraints used for
vertical descent are as follows:

ΣForcesx �= 0

ΣForcesy,z = 0

ΣMoments = 0

NASA/TM—2018-219913 8

2.4.1 Equality Constraints

The basic equality constraints are the same as those described in Section 2.2.2.
The constraints for the hover case are adjusted slightly by removing the requirement
of balancing forces in the x-axis (vertical axis). This requires removing a single line
in the Aeq matrix and the corresponding row in the Beq matrix.

Aeq =
[

ΣMCG

ΣFyz

]

Additional equality constraints must be added to set the primary thrusters to their
maximum thrust value:

Aeq =

⎡
⎢⎣

ΣMCG

ΣFyz[
0M×N IM×M

]
⎤
⎥⎦

Unlike the without off-pulsing case, additional equality constraints are not needed
to set the primary thrusters equal to each other. This is complemented by additions
in the Beq matrix to set these primary thrusters to their maximum thrust:

Beq =
[

05×1
MAXPrim

]

The completed equality constraints are then inserted in the familiar form of

Aeq · x = Beq

where x again represents the thrust level of the different thrusters.

2.4.2 Inequality Constraints

Inequality constraints are modified from the baseline presented in Section 2.2.2.
The constraints related to the primary thrusters are removed because those thrusters
have a fixed thrust value. The modification to the matrices is shown below:

Aineq · x <= Bineq

Aineq =
[
IN×N 0N×M

]

Bineq =
[

MaxACS

0M×1

]

2.4.3 Optimization Function

The optimization function is the last item to be modified for this case. The
dependence on the primary thrusters must be removed from the baseline case pre-
sented in section ref:hwop. These thrust values can no longer be optimized because
they are being set to 100 percent. This is performed by summing only the values

NASA/TM—2018-219913 9

for M ACS thrusters where previously M + N ACS and primary thrusters were
included.

FuelConsumed =
i=M∑
i=1

Ci · xi

This change is implemented by modifying the C vector to ensure that primary thrust
values are not included:

C =
[

11×M , 01×N

]

3 Calculations
TBD Restore After organizing the equality, inequality, and optimization ma-

trices, the simplex method is then applied using the scipy.optimize.linprog()
library in PythonTM. The simplex method, as described by Dantzig [2], is a linear
programming method that can be used with problems that can be described by a
series of linear equations. This method solves the equality and inequality constraints
and determines x and c if there is a viable solution. Where x is the thrust produced
by each thruster and c is the fuel consumption.† An array of viable solutions is
compiled for the final analysis.

To reduce the computational costs of searching the solution space, a boundary-
following algorithm was implemented. This significantly reduced computation time.
To illustrate the computational savings, consider the two examples in Figure 3.
Both of these images trace out the boundary to the same resolution. However, the
full factorial search requires 2,601 samples while the boundary following algorithm
only required 323. Higher resolutions can show even further gains. For the example
above, a 101 × 101 grid that would require 10,201 samples can be traced with only
642 samples.

The algorithm implemented here was created by Pavlidis [3]. While there are
more advanced boundary-following algorithms available, the Pavlidis algorithm was
chosen for its simplicity and performance on the shape of regions expected for this
application.

The algorithm can be described by imagining a walker traversing the boundary,
as shown in Figure 4. Darker squares correspond to examined pixels, green corre-
sponds to the inside of the shape, and red corresponds to the outside. The walker
starts on an interior point and (without loss of generality) facing north. The walker
examines P1, P2, and P3, in that order, until they find a valid point (Figure 4a). If
P1 is a valid point, the walker steps forward and to the left (resulting in a rotation
to the left, Figure 4b). If P1 is invalid and P2 is valid, the walker steps forward
(Figure 4c). If none of these points are valid, the walker rotates 90◦ to the right
and tries again (Figure 4d). If both P1 and P2 are invalid and P3 is valid, the

†A note for bang-bang thrusters: since this is not a time domain analysis, the results of required
percent of thruster firing can be thought of as the equivalent pulse width modulation (PWM) that
happens when the thruster is pulsed over time. Thus a 10-percent thruster value indicates that the
thruster should be fired in such a way that it achieves 10 percent of the maximum thrust which
corresponds to a 10-percent duty cycle for a bang-bang thruster. While this analysis is not perfect,
it does speak to the general capability of the thrusters to counteract force and moment constraints.

NASA/TM—2018-219913 10

Figure 3: Simplex method evaluation. (a) Full-factorial search. (b) Border following.
Each dot represents simplex method evaluation. Green dots are inside valid solution
space (solution does converge). Red dots are outside solution space (solution does
not converge).

walker steps to the right and up (Figure 4e). The algorithm terminates when the
starting location is reached. Different stopping criteria may be required for more
complicated regions, but the regions involved in this application should not require
more complicated criteria.

The values returned by the boundary-following algorithm are viable points along
the boundary only. No information regarding the valid points inside of this boundary
are returned. Thus, even though it may have taken several function evaluations to
initially travel from the CG (the starting point which must be a valid point) to
the boundary, those points are not reported because they are inside of the solution
space.

4 Simulation Outputs
Summarizing the impact of the results from Figure 3 is done by determining the

smallest amount that the CG can be moved before the system becomes unstable.
This will help determine the requirements or bounds on acceptable CG locations
during lander construction and design. Equipment on the lander may need to be
moved to properly balance the craft. The geometric interpretation is achieved by
fitting a circle into the shape of the solution space as shown in Figure 5. The
diameter of that circle is CGΔmax. It is the equivalent of the largest circle that
can be created when starting at the initial CG location and only contains stable
conditions. Some changes in lander configuration may change the stable area, but
do not change CGΔmax. This is because the radius of the circle is based on a
constraint of the closest failure to the CG. In order to increase CGΔmax, the active
constraint must be directly affected by changes in thruster location or initial CG
placement.

A second graph can then be created by using this information by varying the

NASA/TM—2018-219913 11

(a) Start Location (b) P1 Selected (c) P2 Selected

(d) None Valid (e) P3 Selected

Figure 4: First steps in Pavlidis’ algorithm. (a) Start location. (b) P1 selected.
(c) P2 selected. (d) None valid. (e) P3 selected.

MaxACS from 0 to 100 percent and running the entire simulation (simplex method,
boundary following, and CGΔmax evaluation) for every value of maxACS. Then,
maxACS is graphed against CGΔmax. An example of this is shown in Figure 6.
This allows the user to assess how much ACS control authority they are willing to
allocate to CG offset, with the rest of the control authority allowing for maneuvers.

A typical metric is to allocate 10 percent of ACS thruster capability to CG
offset canceling. This is the default metric that is reported by the program. ACS
thrusters at 10 percent is also the first value computed by the program when it is
run in computation only mode (no human input). The target ACS fraction is set
by the optional targetACS parameter.

5 Example Problem
The following hover with off-pulsing example shows the general capabilities of

the tool. The craft mass is configured as 300 kg and the gravitation acceleration
body is Luna. The initial CG is set to [0, 0, 0]. Table 4 describes thruster location,
orientation, type, and maximum thrust. There are five primary thrusters situated
around the craft pointed down toward Luna (negative x-axis). There are 12 ACS
thrusters that are also placed symmetrically around the coordinate system origin.
The maximum thrust of the primary and ACS thrusters is 450 and 20 N, respectively.

The resulting CGΔmax for the 10-percent ACS thruster level is shown in Figure 7.

NASA/TM—2018-219913 12

Figure 5: Sample results of lander with complicated stability region geometry. Red
dots indicate instable solutions. Green dots indicate stable solutions. Predicted SC
CG is at center of blue circle. Blue circle indicates how far CG can move before
system becomes unstable. Maximum radius (CGΔmax) only includes feasible points
dictates size of circle.

The 10-percent ACS thrust level reserves the remaining 90 percent of the ACS
thrust for maneuvering. Maneuvering enables the craft to translate and rotate in a
controlled fashion. The solution space shows that offsets of as much as 0.26 m (26
cm) are allowable if 10 percent of ACS power is allocated to CG offset compensation.
Figure 6 shows the summary information of graphs from the entire solution space.
The 10-percent value of 0.26 m shown in Figure 6 corresponds to the radius of the
circle shown in Figure 7. This large margin for CG movement is typical of hover
with off-pulsing cases.

The same example calculated for hover without off-pulsing will yield a CGΔmax

of 0.009 m (0.9 cm) for 10-percent ACS usage. This indicates that the majority of
the CG offset capability is driven by the ability to use primary thrusters.

6 Conclusion

A tool was developed in PythonTMand shown to be capable of performing static
controls analysis for lander-type spacecraft (SC). This analysis gives an indication
on the allowable movement of the center of gravity (CG) of the SC given the current
CG location, and the thrusters available for torque and force balance operations.
This analysis can act as a first cut at control analysis and should be supported
with time domain controls analysis. The tool covers several types of landing cases,
including hover and vertical descent. Hover with off-pulsing is the most permissive
case and will result in the largest allowable CG offset. Vertical descent is the least
permissive case and will result in the smallest allowable CG offset. Typical inputs
for the scenarios are described as well as the equations used in computing the out-
put. This tool can be included in a larger parametric optimization program as a
computationally inexpensive first cut at controllability analysis.

NASA/TM—2018-219913 13

Figure 6: Final tool output example for hover with off-pulsing. Full solution space
for maximum ACS percentage allocated versus maximum allowable center of gravity
offset from initial guess. Each blue dot corresponds to CGΔmax. Breakout details
of 10 percent case are shown in Figure 7.

References
1. NASA, “Proceedings of the Apollo Lunar Landing Mission Symposium,” NASA-

TM-X-58006, June 1966.

2. Dantzig, G. B., “Origins of the Simplex Method,” Technical Report SOL 87-5,
Stanford, CA, May 1987.

3. Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science
Press, Rockville, MD, 1982.

NASA/TM—2018-219913 14

Table 4: EXAMPLE THRUSTER CONFIGURATION (APPROXIMATE VAL-
UES). VALUES ARE INPUT TO THE TOOL AS A .csv TABLE

ThrustPrimPos SC, (m) ThrustPrimOri Type Max. thrust
[x] [y] [z]
1.3 0.1 0.7
1.3 -0.1 -0.7
0.1 0.7 -0.1
0.1 -0.7 0.1
1.3 0.1 -0.7
1.3 0.1 0.7
0.1 -0.7 -0.1
0.1 0.7 0.1
1.3 0 -0.7
1.3 0 0.7
0.05 0.7 0
0.05 -0.7 0

0 0 0
0 0.25 0.25
0 0.25 -0.25
0 -0.25 0.25
0 -0.25 -0.25

[x] [y] [z]
0 1 1
0 -1 -1
0 1 -1
0 -1 1
0 1 -1
0 -1 1
0 -1 -1
0 1 1
1 0 0
1 0 0
-1 0 0
-1 0 0
-1 0 0
-1 0 0
-1 0 0
-1 0 0
-1 0 0

[1 = primary]
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1

(N)
20
20
20
20
20
20
20
20
20
20
20
20
450
450
450
450
450

Figure 7: Tool output: hover with off-pulsing solution space for 10 percent ACS
thrust. Blue lines represent points in valid area of solution space found by boundary-
following algorithm. Green circle represents CGΔmax.

NASA/TM—2018-219913 15

