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Abstract—Retro-reflectors consist of three reflective optical
surfaces, which are oriented to reflect the input beam by 180 ◦.
For retro-reflector components, it is common to specify an
angular beam deviation tolerance, or rather the deviation from
the exact 180 ◦ return direction. Precision-aligned retro-reflectors
provide 180 ◦ beam deviation with tolerances on the order of an
arcsecond. It is well known that the performance of the retro-
reflector depends on the ability to precisely orient the reflective
surfaces at mutually perpendicular angles. Precision assembly is
therefore critical to ensure highly accurate beam deviation. The
dihedral angle errors, and hence the reflected beam deviation,
can be measured for the retro-reflector after fabrication, typically
by using interferometric techniques. Yet, what is not commonly
reported for a fabricated retro-reflector is the stability of the
angular beam deviation. For instance, thermo-mechanical effects
of the components will contribute to variations in the return beam
direction. While the actual stability is design-specific one can
develop a mathematical representation for the expected change
in the reflected beam direction as a function of the variation
in the dihedral angle errors. Presented here is a mathematical
formulation for a hollow retro-reflector’s beam deviation as a
function of the dihedral angle error stability.

I. INTRODUCTION

A retro-reflector is an optical device which is designed to

return a beam of light back along the direction from which

it originated. A lateral transfer retro-reflector is an optical

device that not only changes the direction of the beam by

180 ◦, but also shifts the beam laterally. In both devices,

the return beam is parallel to the original incident beam.

Common geometry for a retro-reflector is that of a corner-

cube, where three optically flat reflective surfaces are oriented

in a mutually perpendicular fashion. A hollow retro-reflector

refers to a retro-reflector device, which has been constructed

out of three optical elements, as opposed to a solid prism. For

lateral transfer distances that are large compared to the size

of the input beam, it is often advantageous to use a hollow

lateral transfer retro-reflector, which is typically designed as a

truncated version of a corner-cube style retro-reflector.

For retro-reflector applications, the requirements for the

retro-reflector usually involve the beam direction deviation

from the idealized 180 ◦. Initial publications on the accuracy of

retro-reflectors addressed the accuracy of the return direction

from a retro-reflector due to non-idealities in the device [1],

[2]. The work was motivated, for example, by satellite ranging

experiments and lunar laser ranging experiments [3], [4]. For

such applications, the ability for the retro-reflector to return the

incident beam at identically 180 ◦ from the incoming direction

is critical. As such, mathematical derivations pertaining to the

accuracy of the retro-reflector as a function of the dihedral

angle errors was developed [2]. Yet the publications at that

time did not include the mathematical model for the stability

of the beam direction due to variations in the incident beam

direction or for changes in the dihedral angle errors of the

retro-reflecting device. The dihedral angle errors were assumed

to be constant for the device. Yet, in actuality, thermo-

mechanical effects of the device components will contribute to

variations in the return beam direction. For example, thermal

environment variations, material thermal gradients, mechanical

mount design and mechanical joint construction, including

bonding methods and bond line thickness will all affect the

stability of the retro-reflector design, and hence the stability

of the return beam direction. If the retro-reflector is used to

monitor a beam direction, then the stability of the return beam

direction is more critical than the actual return direction value.

While the actual stability is design-specific and is related to the

mechanical and thermal stability of the device, one can develop

a mathematical representation for the expected stability in the

reflected beam direction as a function of the variation in the

dihedral angle errors. This work presents a model for the

expected beam deviation stability, by using the work initially

published by Chandler [2] as a foundation.

II. ERROR DUE TO MECHANICAL CHANGES

This section will consider changes to the geometry of the

retro-reflector and the corresponding error generated in the

reflected beam direction. The fundamental equations for a

retro-reflector are completely dependent upon the geometry,

specifically the angles between the reflective surfaces. Changes

in the geometry, or mechanical stability of these angles, will

dictate the performance of the retro-reflector.

A. Fundamental retro-reflector equations

The direction of a ray before and after reflection off of a

single mirror surface is given by:

V̄ ′ = V̄ − 2
(

V̄ · n̂
)

n̂ (1)

where V̄ is vector defining the original incident ray, V̄ ′ is

the resulting direction vector, and n̂ is the unit normal vector

defining the surface of reflection. Application of the equation

three times for each surface of the retro-reflector results in

the direction of the reflected beam. Chandler [2] applies the

formula three times recursively and then applies small devi-

ations by which the angles between the mirrors exceed right
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angles. Chandler’s formula (valid to first order approximation,

for three nearly perpendicular reflecting surfaces) is:

t̄ = q̂ + 2q̂ ×
(

αâ− βb̂ + γĉ
)

(2)

where −t̄ is the final reflected direction, q̂ is the vector of the

original beam direction, α β, γ, are the small angles by which

the angles between the three reflecting surfaces exceed right

angles (dihedral angle error). The unit vectors, â, b̂, ĉ, define

the normal to each surface of the three planes in the three

bounce sequence, taken in a right hand sense (ray first bounces

off of surface defined by â, then off of the surface defined by

b̂ and finally off of the surface defined by ĉ). In Chandler’s

equation, “The normals may be strictly perpendicular; that

is, they do not need to include the small deviations caused

by the dihedral-angle offsets.” [4]. Thus, if one defines an

orthonormal coordinate system
(

î, ĵ, k̂
)

, the normals to the

planes may be simply approximated as â = î, b̂ = ĵ, ĉ = k̂.

For simplification, we define the combined dihedral angle error

ǭ term as

ǭ = αâ− βb̂+ γĉ (3)

ǭ ≈ αî− βĵ + γk̂ (4)

such that Equation 2 becomes:

t̄ = q̂ + 2q̂ × ǭ (5)

From Equation 5, the expected relation is observed, whereby

the direction of the reflected beam is equal to the negative of

the original incident beam direction plus an error term, which

is a function of the original incident angle.

t̄ = q̂ + E (6)

E = 2q̂ × ǭ (7)

B. Reflected ray direction change due to change in incident

ray direction

It is desired to determine the sensitivity, or the resulting

error in the final reflected beam direction as a function of

a change in the incident ray vector q̂. For a perfect retro-

reflector, the output ray angle will exactly match the negative

of the input ray angle. It is not possible to manufacture

the retro-reflector with exactly perpendicular reflective faces,

which leads to a non-zero error term. As shown in Equation 7,

the error, E, is a function of the incident ray direction. If the

incoming ray direction is changing (due to for example an

induced change due to a steering mirror), what is the change

in the reflected ray direction due to an incremental change in

the incoming ray direction. This variation is the retro-reflector

non-linearity in the reflected beam direction. Thus, it is desired

to determine ∂t̄/∂q̂, which is the Jacobian. Assume that the

vector defining the incident ray is defined in terms of the

orthonormal coordinate system as:

q̂ = ηî+ ξĵ + νk̂ (8)

To compute the Jacobian, consider the change in the reflected

direction vector t̄ with respect to a change in first vector

component, the î direction, of the incident ray. Applying the

chain rule to the cross product term, the partial derivative

becomes:
∂t̄

∂η
=

∂q̂

∂η
+ 2

∂q̂

∂η
× ǭ+ 2q̂ × ∂ǭ

∂η
(9)

Since ǭ is not a function of η, the partial derivative ∂ǭ/∂η is

equal to zero, resulting in:

∂t̄

∂η
=

∂q̂

∂η
+ 2

∂q̂

∂η
× ǭ (10)

Recalling the definition for the incident ray vector, Equation 8,

the partial derivative of the incident ray vector is simply the

orthonormal basis vector, ∂q̂/∂η = î. One then obtains:

∂t̄

∂η
= î+ 2î× ǭ (11)

Substituting the representation for ǭ in terms of the î, ĵ, k̂,
coordinate system, Equation 4, and applying the cross product,

one obtains:
∂t̄

∂η
= î− 2γĵ − 2βk̂ (12)

The sensitivity to the other two components ĵ and k̂ are

computed in a similar fashion resulting in:

∂t̄

∂ξ
= 2γî+ ĵ − 2αk̂ (13)

∂t̄

∂ν
= 2βî+ 2αĵ + k̂ (14)

For completeness, the Jacobian matrix is therefore:

∂t̄

∂q̂
=

[

∂t̄

∂η
,
∂t̄

∂ξ
,
∂t̄

∂ν

]

=





1 2γ 2β
−2γ 1 2α
−2β −2α 1



 (15)

Thus, the rate of change of the outgoing direction vector, as a

function of a change in the incoming direction is unity, plus

two times the errors in the dihedral angles:

∂t̄

∂q̂
= [I] +





0 2γ 2β
−2γ 0 2α
−2β −2α 0



 (16)

By inspection of Equation 16 it is seen that with a change in

a component of the incident ray vector, (η, ξ, ν), the errors in

the orthogonality of the reflecting surfaces is represented in

the other two orthonormal components.

C. Change in reflected ray direction due to dihedral angle

changes

The dihedral angle errors can be measured for corner cube

retro-reflectors using interferometry measurement techniques

as described by Thomas [5] and Zygo [6]. Lateral transfer

retro-reflectors can also be characterized using interferometric

techniques as described in Martin et al. [7]. After initial

measurement and calibration of the retro-reflector device, it

is necessary to understand how the reflected ray direction

changes with a change in the dihedral angle errors. The rate of

change of the reflected beam as a function of a change in the

dihedral angle errors, α, β, γ is the Jacobian,
[

∂t̄
∂α

, ∂t̄
∂β

, ∂t̄
∂γ

]

.
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To compute the Jacobian, the partial derivatives of Equation 5

are readily computed:

∂t̄

∂α
=

∂q̂

∂α
+ 2

∂q̂

∂α
× ǭ+ 2q̂ × ∂ǭ

∂α
(17)

Since the incident ray vector, q̂, is not a function of α, the

partial derivatives of q̂ with respect to α are equal to zero

resulting in:

∂t̄

∂α
= 2q̂ × ∂ǭ

∂α
(18)

The partial derivative ∂ǭ/∂α is simply the orthonormal basis

vector, î. Inserting the expression for the incident ray vector,

Equation 8, and carrying out the cross product, one obtains:

∂t̄

∂α
= 2νĵ − 2ξk̂ (19)

In a similar fashion, the sensitivity to the other two dihedral

angle errors is also found:

∂t̄

∂β
= 2νî− 2ηk̂ (20)

∂t̄

∂γ
= 2ξî− 2ηĵ (21)

For completeness, the Jacobian with respect to a change in the

dihedral error components is given by:

∂t̄

∂ǭ
=

[

∂t̄

∂α
,
∂t̄

∂β
,
∂t̄

∂γ

]

=





0 2ν 2ξ
2ν 0 −2η

−2ξ −2η 0



 (22)

It is interesting to note that the Jacobian for a change in the

dihedral angle is only a function of the incident ray vector

components, η, ξ, ν. Thus, depending on the application, it

may be possible to reduce the dependency on a change in

dihedral angle error by choice of the incident ray direction.

Work by Karube [8] also noted the existence of an optimal in-

cident ray direction, where the influence of angular deviations

may be eliminated.

III. ERROR DUE TO THERMAL CHANGES

By using the equations for the error due to mechanical

variations, one can estimate an approximate error from thermal

changes which result in a geometrical variation. To estimate

a change in the dihedral angle due to thermal bending, one

can approximate the hollow retro-reflector as three plates.

The physical model of the system may be represented as

either a thin plate with bending in two dimensions or a

simplified model as a beam in pure bending. To gain an

intuitive understanding of the physical system, the simplified

model of a beam in pure bending will be discussed here.

It is understood that this simplified model will not exactly

match the actual physical system, which exhibits bending in

two dimensions.

Fig. 1. Standard beam theory model for estimating the angular deviation
(slope) due to a temperature differential.

A. Beam in bending model

A simplified model for the thermal deformation is that of

a one-dimensional beam in bending with one end fixed and

the other end free to move. The fixed end represents the

seam forming the dihedral angle. For simplicity, the plates are

assumed to be connected only at the seam forming the dihedral

angle. This represents a worst case bound on the change in the

dihedral angle. An applied thermal load, ∆T , will result in a

change in length ∆L, of the beam with length L, resulting in

a thermal strain:

ε =
∆L

L
= αT∆T (23)

where αT is the coefficient of thermal expansion for the

material. Note that the subscript T is used to denote that the

coefficient of thermal expansion is a function of temperature,

and also to help avoid confusion with the dihedral angle error

α. From structural mechanics and beam bending theory, the

radius of curvature of a beam, ρ, with thickness h is given in

terms of the strain, ε, as: [9]

1

ρ
=

ε

h
(24)

The angular deviation, dθ, at position x along the beam is

given by:

dθ =
1

ρ
dx (25)

If one assumes a linear temperature profile in the optical plate,

then the difference in the strain at the top surface and the

bottom surface is

εt − εb = αTTt − αTTb = αT∆T (26)

Thus, the resulting angular deviation in terms of the differen-

tial thermal strain is given by:

dθ = dx
αT∆T

h
(27)

Evaluating at the length of the beam, L, the angular deviation

is (Figure 1):

θL =
LαT∆T

h
(28)

The angular deviation, θL, can then be inserted into the

equations to represent a change in the dihedral angle errors.

NASA/TM—2018-219946 3



IV. NUMERICAL EXAMPLES

For numerical estimates of the dihedral angle error and the

resulting error in beam deviation, some assumed parameters

of the retro-reflector are necessary. Mechanical properties

such as the accuracy of the retro-reflector and the incident

ray angle direction must be assumed. Lateral transfer hollow

retro reflectors can be fabricated with sub-arcsecond beam

deviation (total error after a three-bounce reflection) and better

than λ/10 wavefront error (λ = 632.8 nm) [10]. The beam

deviation error is the magnitude of the total error, ‖E‖, given

by Equation 7. In order to generate a value for the dihedral

angle errors, we assume the incident ray direction vector is a

unit vector such that the elements are equal, i.e. η = ξ = ν.

This also corresponds to a ray which is parallel to the axis of

symmetry for a corner-cube retro-reflector. Thus, for q̂ to be

a unit vector, η = 1/
√
3. Also, for simplicity, one can assume

that the dihedral angle errors, α, β, γ are also identical. Given

these assumptions, the magnitude of the error term, ‖E‖, is

easily shown to be:

‖E‖ = 4
√
2α η (29)

If the total beam deviation angle is equal to 4.8 urad, (1 arcsec),

the dihedral angle errors, for an incident ray direction vector

of q̂ = 1√
3

(

î+ ĵ + k̂
)

, would be equal to:

α =
‖E‖
4
√
2 η

= 1.5 urad (30)

For the numerical calculation examples, the dihedral angle

errors will therefore be assumed to be α = β = γ = 1.5 urad.

Additionally, it will be assumed that the initial incident ray

direction vector is a unit vector, such that the elements are

equal, i.e. η = ξ = ν. It is important to note, that the values of

the computed errors will be different depending on the values

used for the incident ray direction.

A. Change in incident ray direction

A change in the incident ray direction may occur either

by a controlled change, such as through a steering mirror,

or through an unknown change due to for instance thermal

drift of the optical mounts in the optical system prior to the

retro-reflector. Recall the expressions for the sensitivity in

the reflected ray direction vector with respect to a change in

incident ray direction, q̂, Equations 12, 13, and 14. Rewriting

the partial derivative as an incremental change from the

nominal one obtains:

∂t̄

∂η
= î− 2γĵ − 2βk̂

∆t̄η = ∆ηî− 2∆η
(

γĵ + βk̂
)

(31)

By inspection of Equation 31 it is seen that the error term

component consists of the product of two likely small num-

bers, namely the dihedral angle errors and the change in the

incident direction. As a result, the error contribution is likely

small compared to the change in the incident ray direction.

As an example, consider a change in incident ray direction

of the first orthogonal component, η. Since q̂ is a unit vector,

the components, η, ξ, ν are the direction cosines. Thus, for an

angular change, θi, relative to the î axis, the relationship for

η is given by cos θi = η. Taking the derivative, one has the

relationship between a change in η due to a change in θi.

∂η

∂θi
= − sin θi (32)

∆η = −∆θi sin θi (33)

Substituting the expression for ∆η, the error portion of Equa-

tion 31, becomes:

−2∆η
(

γĵ + βk̂
)

= 2∆θi sin θi

(

γĵ + βk̂
)

(34)

Assume that α = β = γ, and taking the norm of the error

portion of the vector, one obtains:
∥

∥

∥
2∆θi sin θi

(

γĵ + βk̂
)
∥

∥

∥
= 2

√
2β∆θi sin θi = Eη (35)

For a numerical value, consider the case where the incident

ray angle, θi, deviates by 100 urad and also assume that α =
β = γ = 1.5 urad. For η = ξ = ν = 1√

3
, and noting that

θi = cos−1 η, the magnitude of the error, Eη, is found to

be approximately 0.35 nrad, which is small compared to the

100 urad change in the incident ray angle.

B. Rotation of retro-reflector

For a perfect retro-reflector, the stability of the retro-

reflector orientation will not have an effect on the output ray

direction vector. Yet, for a retro-reflector with dihedral angle

errors, it is readily seen from Equation 2, that the stability of

the retro-reflector mounting will affect the output ray direction

vector. For this example, the incident ray direction is assumed

constant. Thus, the change in the incident ray direction, q̂
in Equation 2 is now a result of a change in orientation

of the retro-reflector. The analysis for the error generated

due to a rotation of the retro-reflector is therefore identical

to that of holding the retro-reflector fixed and allowing the

incident ray to deviate from the nominal condition. The

numerical analysis presented in Section IV-A is therefore

directly applicable. For a slightly different numerical example,

consider the case where specifications on the stability of the

retro-reflector mounting must be specified. To determine the

maximum allowable angular rotation of the retro-reflector,

one must first establish the maximum allowable error in the

outgoing reflected beam direction. Assume, for example, a

maximum allowable error in the reflected ray direction to be

on the order of 1 nrad. Consistent with the assumptions in

Section IV-A, (α = β = γ = 1.5 urad, and η = ξ = ν = 1√
3

,

where θi = cos−1 η), one can apply Equation 35, solving for

the change in the incident ray direction, or equivalently the

rotational change of the retro-reflector orientation.

Eη = 2
√
2β∆θi sin θi

∆θi = Eη/
(

2
√
2β sin θi

)

(36)

Substitution of the numerical values yields a rotational stability

value of ∆θi equal to 0.29 mrad for an error, Eη, of 1 nrad.
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C. Change in dihedral angles

Returning to the expressions for the sensitivity in the

reflected ray direction vector with respect to a change in the

dihedral angle errors, Equations 19, 20 and 21, one can quickly

compute the sensitivity for the assumed incident ray direction

with η = ξ = ν and when α = β = γ. Rewriting the partial

derivative as an incremental change from the nominal one

obtains:

∆t̄α
∆α

=
∂t̄

∂α
= 2νĵ − 2ξk̂

∆t̄α = 2∆α
(

νĵ − ξk̂
)

(37)

The total magnitude of the change is the norm of the vector:

‖∆t̄α‖ = 2
√
2η∆α (38)

‖∆t̄α‖ =
2
√
6

3
∆α (39)

and similar for the change in the other two dihedral angle

errors:

‖∆t̄β‖ = 2
√
2η∆β (40)

‖∆t̄γ‖ = 2
√
2η∆γ (41)

A likely cause for the dihedral angles to change after initial

calibration is due to a thermal gradient across the thickness

of the reflecting surface within the retro-reflector. Equation 28

can be used to approximate the amount of this dihedral angle

change. Equating the dihedral angle error change, ∆α, with

the beam angular deviation, θL, one obtains:

∆t̄α = 2∆α
(

νĵ − ξk̂
)

∆t̄α = 2θL

(

νĵ − ξk̂
)

(42)

∆t̄α = 2
LαT∆T

h

(

νĵ − ξk̂
)

(43)

To obtain a numerical estimate, a geometry as well as

thermal and material properties must be assumed. For a rep-

resentative material, a corner-cube retro-reflector is assumed

to be composed of Borofloat 33 glass, with a coefficient

of thermal expansion equal to α20−300◦C = 3.25e-6 K−1.

For the temperature gradient within the plate of glass, a

value of 0.05 K is assumed. Note that here, a slightly more

conservative value is used than that published by Ortiz and

Lee [11], where a 0.01 K temperature gradient after 2.5 hours

was assumed. For a representative geometry, a retro-reflector

with a clear aperture of 50 mm is used. The nominal glass

plate thickness is assumed to be on the order of 13 mm. For

the angular displacement calculation, the center of the clear

aperture and the full range of the clear aperture can be used as

the equivalent beam length. Since the retro-reflector has a clear

aperture of 50 mm, a length range of 25 mm (center) to 50 mm

(farthest extent) is used for a worst case approximation. Using

Equation 28, the change in the dihedral angle at L = 25mm

and for L = 50mm are equal to θL=25 = 0.3µrad and

θL=50 = 0.6µrad respectively. For a worst case scenario,

these values are assumed for the dihedral angle error for

each of the surfaces, i.e. α, β, γ. Assuming the incident ray

direction vector, q̂ = 1√
3

(

î+ ĵ + k̂
)

, the sensitivity, or total

Fig. 2. Photo of retro-reflector hardware. The retro-reflector is a modified
corner cube design with a lateral transfer.

magnitude of the change for ∆α equal to θL=25 and θL=50 is

provided by Equation 38. The resulting total magnitude of the

change, ‖∆t̄α‖ is 0.5µrad and 1.0µrad for θL=25 and θL=50

respectively.

V. MODELING AND SIMULATION

In Section III-A, a simplified beam bending model was

described to approximate the deformation of the retro-reflector

glass plates due to a thermal gradient. Since the simplified

model does not account for additional constraints and bending

in two-dimensions, it is known that the simplified model will

be in error from the actual observed deformation of the actual

corner-cube geometry. In order to get a sense of the validity of

the simplified model, a thermal-structural deformation model

is simulated in Comsol. For the thermal-structural model, two

geometries are considered. First, a hollow retro-reflector is

modeled using three solid plates of glass. The clear field of

view is 50 mm. Secondly, a solid model geometry representing

an actual manufactured lateral transfer hollow retro reflector

(a modified corner-cube design) is analyzed. A photo of the

hardware for the manufactured hollow retro-reflector is shown

in Figure 2. For material properties, both models assume the

material is Borofloat 33 glass for the entire geometry. For

constraints, a fixed displacement constraint on one edge of

the glass plate is used as shown in Figure 3. It is important to

note, that the mechanical constraint is chosen to be consistent

with the simplified beam bending model described in Sec-

tion III-A. The actual constraint for a realistic system would

need to reflect the corresponding opto-mechanical mount for

the retro-reflector. For the thermal boundary conditions, a fixed

thermal delta across the thickness of the plates comprising the

reflecting surfaces of the corner cube and retro-reflector is

applied. Similar to the numerical example in Section IV-C,

a temperature differential of 0.05 K is used, where the inside

surface of the retro-reflector is warmer than the outside sur-

face.

The resulting angular displacement from the thermal-

structural model is shown in Figure 4. From the simulation

of the simplified corner cube geometry, Figure 4(a), it is seen

that the angular displacement about the z-axis at the far corner

edge of the corner cube is on the order of 0.3 urad. At one

half the distance to the edge of the corner cube, the angular

displacement is on the order of 0.1 urad or less. Recall that
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(a) Simplified corner-cube geometry.

(b) Modified corner-cube retro-reflector.

Fig. 3. Comsol thermal-structural model, mechanical constraint. The model
assumes a static, zero displacement at the edge of one glass plate forming the
hollow retro-reflector (shaded blue region on back side).

the computed values in Section IV-C, for the change in the

dihedral angle at L = 25mm and for L = 50mm are equal

to θL=25 = 0.3µrad and θL=50 = 0.6µrad respectively. The

length of L = 25mm corresponds to a location at the center

of the corner cube clear aperture and the length of L = 50mm

corresponds to the far edge of the corner cube. Thus, the

simulation results indicate that the simplified model using a

beam in bending is approximately a factor of two to three in a

conservative sense as compared to a plate in two-dimensional

bending.

Next, the second retro-reflector geometry is analyzed. The

thermal-structural angular displacement results for the geome-

try representing the modified corner-cube hollow retro reflector

hardware are shown in Figure 4(b). Since this retro-reflector

is not a pure corner cube, there is a portion of the reflecting

surface which is unsupported by the other facet of the retro-

reflector. From the simulation results in Figure 4(b), it is seen

that the majority of the deformation occurs after the central

corner-cube portion, where the plate is no longer supported

by the adjacent facet. The deformation around the z-axis is

observed to be less than approximately 1.0µrad. In order to

compare the result to the simplified beam bending model, the

beam length is needed. For the modified corner shown in Fig-

ure 2, the maximum distance from the z-axis is 100 mm. Using

Equation 28, the change in the dihedral angle at L = 100mm

is equal to θL=100 = 1.25µrad, which is consistent with

the simulation results in Figure 4(b). Again, assuming the

(a) Simplified corner-cube geometry.

(b) Modified corner-cube retro-reflector.

Fig. 4. Comsol thermal-structural models. The simplified geometry does not
include an appropriate opto-mechanical mount. The model assumes a static
temperature differential across the thickness of the glass plates forming the
hollow retro-reflector. The color indicates one half the curl of the displacement
about the z-axis, which is the angular displacement around the z-axis.

incident ray direction vector to be q̂ = 1√
3

(

î+ ĵ + k̂
)

, the

sensitivity for ∆α equal to θL=100 is provided by Equation 38.

The resulting magnitude of the change, ‖∆t̄α‖ is 2.0µrad for

θL=100. It is important to note that this calculation is for the

deformation observed at the maximum normal distance from

the seam forming the dihedral angle. The modified corner cube

retro-reflector is designed to have a clear aperture of 50 mm.

Thus, the actual beam variation across the entire beam width

will be less.

VI. CONCLUSION

A mathematical representation for the change in the beam

deviation angle from a retro-reflector as a function of the

dihedral angle errors and incident beam direction was pre-

sented. Thus, given an estimate for either the expected stability

of the dihedral angle errors, or for the expected directional

stability of the retro-reflector incident beam, the variation in

the beam deviation angle can be estimated to the first order.

In addition, a simplified model based on beam theory was

developed to estimate the dihedral angle variations of a hollow

retro-reflector due to a thermal gradient. The developed math-

ematical representation, combined with the simplified model

can be used to estimate the stability of the retro reflector’s

beam deviation. For the example presented, a variation in the

dihedral angles produces a larger change in the return direction

than a variation in the incident beam direction.
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