
Rosana M. Maringolo Baldraco, Eliot D. Aretskin-Hariton, and Aaron J. Swank
Glenn Research Center, Cleveland, Ohio

Pointing System Simulation Toolbox With
Application to a Balloon Mission Simulator

NASA/TM—2017-219695

October 2017

https://ntrs.nasa.gov/search.jsp?R=20170011149 2019-08-31T01:32:10+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/141519384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Rosana M. Maringolo Baldraco, Eliot D. Aretskin-Hariton, and Aaron J. Swank
Glenn Research Center, Cleveland, Ohio

Pointing System Simulation Toolbox With
Application to a Balloon Mission Simulator

NASA/TM—2017-219695

October 2017

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

This development of the Python toolbox for attitude determination simulation was funded by the Gondola for High Altitude
Planetary Science (GHAPS) project. The authors would like to thank Calvin Robinson and George L. Thomas for their time in
reviewing and debugging, Dean Schrage for helping with Ballon Mission Simulator integration, and Jim Lanzi for his help with
Kalman fi lter implementation.

Available from

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

Abstract

The development of attitude estimation and pointing-control algorithms is necessary
in order to achieve high-fidelity modeling for a Balloon Mission Simulator (BMS).
A pointing system simulation toolbox was developed to enable this. The tool-
box consists of a star-tracker (ST) and Inertial Measurement Unit (IMU) signal
generator, a UDP (User Datagram Protocol) communication file (bridge), and an
indirect-multiplicative extended Kalman filter (imEKF). This document describes
the Python toolbox developed and the results of its implementation in the imEKF.

1 Introduction

The use of telescopes for planetary science observations is an emerging use of high
altitude balloons. Instead of using complicated adaptive optics, the balloon allows
the observatory to be located in about 98% vacuum and the optical observations are
less affected by the atmosphere. In addition, scientific observations from balloons
may be as much as 1/30th of the cost associated with similar space-based obser-
vations [1]. Lastly, the instrumentation is normally retrieved after every mission,
allowing for multiple flights.

A Balloon Mission Simulator (BMS) has been developed1. This simulator will
take advantage of the Pointing System Simulation Toolbox (PSST) presented in this
document to add high-fidelity pointing simulation. This toolbox has the capability
of emulating different star tracker (ST) and Inertial Measurement Unit (IMU) com-
binations, allowing projects to select the best one for their application. The PSST
was developed in Python and consists of a true signal generator, a UDP (User Data-
gram Protocol) communication bridge, a sensor signal simulation that adds errors to
the signal, and an attitude indirect-multiplicative extended Kalman filter (imEKF).

A true signal generator creates sensor signals that are sent over UDP bridge
to the sensor signal simulation. The sensor signal simulation adds hardware errors
(bias) and noise and calculates IMU Euler angles and angle rates. This information
is then sent to the imEKF for processing, via another UDP bridge. Typical IMUs
generates angles and angle rates, and STs outputs attitude quaternions. For this
reason, the sensor signal simulation gives out a quaternion, Euler angles, and angle
rates. The imEKF processes these signals and generates an error in the attitude
estimate (will be explained in more details in Section 4). The final output of the
filter, however, is an estimated quaternion. The attitude estimation is then sent to
the BMS via UDP bridge for pointing correction. Figure 1 shows the diagram of
the entire system for illustration.

1LynxCAT, unpublished work developed by Dean Schrage (Zin Technologies/NASA GRC).

NASA/TM—2017-219695 1

Pointing System Simulation Toolbox With Application
to a Balloon Mission Simulator

Rosana M. Maringolo Baldraco, Eliot D. Aretskin-Hariton, and Aaron J. Swank

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Figure 1: Diagram of data flow.

This document gives an overview of the PSST. Section 2 describes the true signal
generation and the sensed signal simulation. Section 3 describes the bridge code.
Section 4 describes the imEKF mathematical model. Results of the implementation
are presented in Section 5.3.

2 True Signal Generator and Sensor Signal Simulation

Typically, the quaternion desired values are calculated in the Balloon Mission Sim-
ulator. This is a high-fidelity calculation of the expected pointing quaternion as
a function of the position and dynamics of the balloon. This toolbox includes a
quaternion generator that uses simplistic models for testing purposes only. Noise
and measurement errors are added to the quaternions based on the characteristics
of the sensors chosen. The file ST true signal UDP.py generates the true signal.
The file sensors signal UDP.py generates both the ST and the IMU signals with
noise and errors.

The true signal values will come in a packet containing 40 bytes of data, as
shown in Figure 3. The size of the data accounts for a quaternion (4 doubles = 32
bytes) and one double for the time stamp associated with the quaternion (8 bytes).
The time stamp is in POSIX time2 format.

The received data packet needs to be unpacked. After unpacking the data, it
becomes a type tuple3 with 5 components. The data needs to be extracted into

2Unix time (also known as POSIX time or epoch time) is a system for describing instants in
time, defined as the number of seconds that have elapsed since 00:00:00 Coordinated Universal
Time (UTC), Thursday, 1 January 1970, not counting leap seconds. (Wikipedia)

3A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The
differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use

NASA/TM—2017-219695 2

its many variables. In the case of the true attitude trajectory values data packet,
the data will be extracted into two variables, the quaternion and the time stamp
associated with it. It is important to note that the quaternions in the Python
simulation are treated as right-handed (the scalar term is the 1st term). The right-
hand quaternion format was chosen to be consistent with the quaternion library
(Reference [2]) utilized in the code.

Once the data is extracted and errors/noise are added, the data is packed in a
variable and sent to the imEKF. The imEKF library we are using requires quater-
nions in left hand format, so we flip the quaternions into that format before pro-
cessing data.

2.1 Star Tracker signal simulation

The ST signal simulation includes Gaussian white noise to the attitude quaternion
true values coming from the MATLAB simulation. The method applied to include
these errors is described below.

1- Generate roll, boresight, and cross-boresight Gaussian white noise by using a
random number generator and multiplying it by each axis. The multiplication
creates an error quaternion every time step. In the sensors simulation code
the error quaternions are named qroll for roll errors, qxb1 for boresight errors,
and qxb2 for cross-boresight errors.

2- In addition to random errors (noise), very small bias errors are accounted for
as well. In the code, the bias is generated by transforming the bias angles
given in the hardware specs into bias quaternions, by means of an Euler-to-
quaternion transformation matrix M (Eq.1). In the code, the given bias angles
are named thet(for θ), phe(for φ), and cy(for ψ).

M =


cos(φ/2) ∗ cos(θ/2) ∗ cos(ψ/2) + sin(φ/2) ∗ sin(θ/2) ∗ sin(ψ/2)
sin(φ/2) ∗ cos(θ/2) ∗ cos(ψ/2) − cos(φ/2) ∗ sin(θ/2) ∗ sin(ψ/2)
cos(φ/2) ∗ sin(θ/2) ∗ cos(φ/2) + sin(φ/2) ∗ cos(θ/2) ∗ sin(ψ/2)
cos(φ/2) ∗ cos(θ/2) ∗ sin(ψ/2) − sin(φ/2) ∗ sin(θ/2) ∗ cos(ψ/2)

 (1)

3- Lastly, all errors are included to the true values by means of quaternion mul-
tiplications. Quaternion multiplications are the same as rotations. The small
random rotations cause a jitter effect in the pointing quaternion, which is
expected in real hardware.

2.2 IMU signal simulation

An Inertial Measurement Unit (IMU) typically outputs rotation rates (gyroscope)
and/or Euler angles. This simulation outputs both rotation rates and Euler an-
gles. In order to simulate the signal, the sensors generator code takes in the true
quaternion values from MATLAB, calculates the change in quaternion between two

parentheses, whereas lists use square brackets (www.tutorialspoint.com).

NASA/TM—2017-219695 3

consecutive quaternions (dq), the rotation angle between them (turning angle), and
the time elapsed between the quaternion rotations. The change in quaternion (dq) is
then transformed into Euler angles (yaw, pitch, and roll). The process to calculate
the IMU angles and angle rates, as well as the addition of errors and noise to it will
be described in this subsection.

2.2.1 Euler angles and angle rates calculation with errors and noise:

1- For every two consecutive true quaternions a change (quaternion rotation dq) is
calculated by dividing the new quaternion (q(t)) by the previous quaternion
(q(t − 1)), or qnew/qold in the code. This is the same as subtraction, in
quaternion algebra.

2- The Euler angles can be calculated after dq’s are obtained. An algorithm based
on Trawny [3] Eq.106 was developed, as described below:

qL = (0 0 0 1)

where qL is the local frame that the rotations are expressed in,

Q =


qL(4) −qL(3) qL(2)
qL(3) qL(4) −qL(1)

−qL(2) qL(1) qL(4)
−qL(1) −qL(2) −qL(3)

 (2)

and Q is the transformation matrix between a rotation quaternion and its
correspondent Euler angles, where the angles are obtained by:(

Φ
θ
Ψ

)
= 2 ∗Qᵀ ∗ dq (3)

3- The errors are generated and included in the Euler angles.

4- The time elapsed between two quaternions calculation is simply a subtraction of
the two consecutive time stamps associated with each quaternion.

5- The angle rates can then be calculated:(wx
wy
wz

)
=

(
dΦ/dt
dθ/dt
dΨ/dt

)
where Φ, θ, and Ψ are the Euler angles with errors already included.

The IMU signal being sent to the imEKF will only contain the Euler angles
for processing, because the imEKF is currently set to operate with angles and not
angular rates. This can be changed as needed.

NASA/TM—2017-219695 4

2.3 Data packet to the imEKF

At the end of the sensors signal simulation code, all information that needs to be
sent to the imEKF will be concatenated in a list to form the data packet. The items
being sent to the Kalman filter are listed below. They are placed in the following
order inside the data packet:

1- The quaternion (with errors), in left-hand format (scalar term as the last term to
be consistent with the imEKF algorithm). The quaternion contains 4 doubles.

2- The IMU time elapsed between two IMU signals (dt). It is used inside the imEKF
for calculations. The variable dt is a double.

3- The ST time stamp associated with each ST quaternion generated in the file.
The ST time stamp is a double.

4- The IMU time stamp associated with each IMU angle generated in the file. The
IMU time stamp is a double.

5- The Euler angles, in the yaw, pitch, and roll order. The Euler angles contains 3
doubles.

The pack function sets the packet to contain 10 doubles (80 bytes) to account
for all items above. The remote port is currently set to 20000, which is the local
port of the imEKF file.

3 UDP Bridge

UDP stands for User Datagram Protocol and enables inter processes communication.
There are two types of bridges: one is a Python-Python bridge that allows data
exchange between two Python processes. The other is a Python-Simulink bridge
and allows data exchange between Python and Simulink.

The bridge code consists of two parts: one part receives data, and the other one
sends it. The communication link can be unidirectional (sends or receive data) or
bidirectional (sends and receives data). Listing 1 shows a generic UDP bridge.

1 import socke t
2 import sys
3 import time
4 import errno
5 from s t r u c t import pack
6 from s t r u c t import unpack
7

8 # UDP setup
9 host = ” l o c a l h o s t ”

10 LocalPort = 18000
11 RemPort = 25000
12 sock = socket . socke t (socke t . AF INET , socket .SOCK DGRAM, socket .

IPPROTO UDP)
13 sock . s e t sockopt (socke t .SOL SOCKET, socket .SO REUSEADDR, 1)
14 sock . bind ((host , LocalPort))
15

NASA/TM—2017-219695 5

16 whi le True :
17 t = time . time () #POSIX time
18

19 # attempt to read data
20 t ry :
21 dataRecv , addr = sock . recvfrom (1024)
22 except IOError as e : # some e r r o r s are ok , l i k e #11 means no data

a v a i l a b l e
23 e r r = e . args [0]
24 i f e r r == errno .EAGAIN or e r r == errno .EWOULDBLOCK:
25 # no data a v a i l a b l e
26 dataRecv = ’ ’ # s e t the re turn value as an empty s t r i n g
27 e l s e : # r e a l l y bad e r r o r occurred
28 # a r e a l e r r o r occurred
29 pr in t (e)
30 sys . e x i t (1)
31 e l s e :
32 i f dataRecv != ’ ’ :
33 dataRecv = unpack (’ ddddd ’ , dataRecv) #unpack the data s t r i n g in to a

tup l e

Listing 1: Excerpt from the UDP bridge generic code.

3.1 Python-Python Bridge Settings

This section describes how we modify the bridge to send and receive data in the
PSST. The names inside the parenthesis are the names of the actual variables in the
code.

> The host number (host): The host is the IP address of the machine where the
process is running. In the Python UDP bridge code, it can either be set to
‘localhost’ or the IP address number. In the MATLAB 2010a UDP receive
block the input needs to be the actual IP address (‘localhost’ will not work).

> Remote port (RemPort): this is the port number of the process where you are
sending the data to. It is also the local port of the receiving process. It is an
arbitrary number between 0 and 65536, however, port numbers between 0 and
1024 are reserved for privileged services and designated as well-known ports.

> Local port (LocalPort): this is the port number assigned to the process receiving
data. It is also the remote port of the sending file.

> Buffer size: Inside the receive code, the sock.recvfrom (Listing 1, line 21) function
has an input parameter, which is the buffer size to receive data. A default
value for the buffer size is 1024 bytes.

> The data packet to be sent (packsend): this is the concatenated list of all data to
be sent. All information needs to be included in one Python list object. Every
item inside the packsend list has to be represented by a data type inside the
pack function, as described next.

NASA/TM—2017-219695 6

> Data type and size inside the pack function: the data size and type being sent
needs to be established inside the pack function. A list of data types in Python
can be found in Figure 2.

> Data type and size inside the unpack function: similar to the ‘pack’ function, the
data size and type being received needs to be established inside the unpack
function. One needs to know this information in order to receive the packets
inside the file. In the example file, the unpack function is set to receive 40 bytes
of data (5 doubles, 4 for the quaternion, and 1 for the time stamp associated
with it). Please refer to Listing 1, line 33 of the code for illustration. Figure
3 shows the data packet bytes distribution.

Figure 2: Python binary codes

NASA/TM—2017-219695 7

Figure 3: Data packet structure

3.2 Python-Simulink Bridge Settings

The Python-Simulink UDP bridge was developed to enable communication between
the BMS and the PSST. The Simulink side of the bridge was originally designed
in MATLAB 2010a to match the BMS version. However, it is possible to use this
bridge with other MATLAB versions. This subsection describes the settings for
both the send and the receive blocks of the bridge.

3.2.1 The UDP Receive Block

The UDP block to receive data in MATLAB is similar to the UDP receive code
in Python. It consists of an IP port (set to 25000, as mentioned earlier in this
document), a buffer size (currently set to 8192 bytes), the remote IP address (IP
address of the machine where the data is being sent to - if same computer, then the
remote IP will be the same for the host and the target files), and the size of the
packet being received (here it is the number of items, not the number of bytes. In
this case, 8 items - 4 components for the quaternion estimation and 4 components
for the error quaternion). See Figure 4(a).

NASA/TM—2017-219695 8

(a) MATLAB UDP Receive block (b) MATLAB UDP Send block

Figure 4: UDP Send and Receive Simulink blocks for illustration.

3.2.2 The UDP Send block

The UDP Send block is also similar to the UDP send code in Python and is described
in Figure 4(b). Its inputs are the IP address of the machine being used and the
remote port, which is the local port of the file where the data is being sent to (set
to 21000). In this case, the data will be sent to the sensor signal simulation in
Python once the system is fully integrated. Currently, the ST true signal.py file
in Python is replacing this part of the code. The UDP Send block in MATLAB is
just a communication block that will be integrated with the true attitude trajectory
simulation in MATLAB system once it is completed. This block does not required
specification of the data size.

3.2.3 The Soft Real Time Block

The Soft Real Time block regulates the data flow speed in the simulation. It is
currently set to operate at 100 Hz, which is the IMU frequency (highest sensor
frequency). The RealTime folder needs to be included in the MATLAB path in
order for the Soft Real Time block to work. It will show as a ‘bad link’ when
MATLAB file if the RealTime folder has not been included in the path.

4 Kalman Filter

An indirect-multiplicative extended Kalman filter (imEKF) is being utilized within
the PSST. An extended Kalman filter is capable of predicting errors for non-linear

NASA/TM—2017-219695 9

systems. In the EKF, the current estimate (i.e., conditional mean) is used for the
nominal state estimate, so that x̄(t) = x̂(t) [4]. As a side note, a Kalman filter that
estimates the full state of the system is denoted as a direct Kalman filter [5].

An indirect EKF gives out pointing estimation errors (the state is the error in
the estimated attitude, not the attitude directly). In this imEKF, the state is the
error in the Gibbs vector.

In order to get an output that is the estimated quaternion instead of the attitude
error, the attitude error needs to be added to the estimated quaternion at the end,
which is what is currently being calculated inside the imEKF.

The multiplicative part of the filter means that the attitude is being represented
as a quaternion product (see Eq.138 in [3]).

The filter can operate with data files or hardware data, and it is to the discretion
of the user which one to choose or how to implement it. Implementation of the data
inside the filter will be presented in Section 4.6.

In the current configuration, the imEKF will process the simulated signals from
the IMU and ST, received via the UDP bridge (emulating hardware data). The
imEKF processes left-hand format quaternions. For this reason, the sensors signal
simulation file in Python already reformats the quaternions when forming the data
packet to be sent to the imEKF. The output of the imEKF is the estimated attitude
pointing quaternion that predicts where the telescope is pointing at. A data packet
is then formed to be sent back to the BMS.

4.1 General Equations

The imEKF is primarily an implementation of [3], [6], and [7]. This subsection is
an overview of the mathematics of this imEKF for documentation purposes. All
equations and associated comments from next paragraph until Subsection 4.5 were
extracted from an unpublished document.4 The imEKF is still under revision for
release, but it has been validated against WASP (Wallops Arc Second Pointer) data
and results can be found in [8]. The performance of the filter is out of the scope of
this document, however, the results of the integration of the Python simulated data
with the filter is presented in Section 5.3

The unit quaternion is the primary means for parameterizing the attitude solu-
tion. A quaternion giving the orientation of the body frame (B) relative to an inertial
frame (I) is defined in terms of its vector and scalar components as a function of the
Euler axis of rotation (e) and rotation angle (φ):

qB/I =

[
q
q4

]
=

[
e · sin(φ/2)
cos(φ/2)

]
A ”right-to-left” quaternion multiplication is adopted:

p⊗ q =

[
p4q + q4p − p × q

p4q4 − p · q

]
4WASP project files/Development of Extended Kalman Filter for WASP) by Heatwole and Lanzi,

December 19, 2011.

NASA/TM—2017-219695 10

The kinematic equations describing the propagation of body-rate (IωB) into
body attitude are as follows:

q̇B/I =
1

2

[
IωB

0

]
⊗ qB/I

The rate sensor is modeled by the following equation:

ω̃ = ω + bω − νω

where ω̃ is the modeled output of the rate sensor, which consists of the true rate
(ω), corrupted by a bias term (bω) and a Gaussian white noise term (νω).

The rate estimation is defined by:

ω̂ = ω̃ − b̂ω

and the rate estimation error is defined by:

δω ≡ ω − ω̂

Similarly, the bias estimation error is defined as:

δbω ≡ bω − b̂ω

4.2 Filter Formulation

The propagation of the state error in discrete form can be written as a matrix:

δXk = Φk−1δXk−1 + Γk−1νk−1

where Φ is the state transition matrix, Γ is the system noise transition matrix, and
ν is the discretized system noise. For the EKF it is assumed that the corrected error
state is equal to zero after each Kalman update.

The pre-updated state covariance is propagated as:

P−k = ΦkPk−1Φᵀ
k + ΓkQk−1Γᵀ

k

where P−k is the propagated covariance at step k and Q is the system noise covariance
matrix.

The residual is calculated upon new measurement:

δzk = hobs(Xk) − h(X̂k)

The Kalman gain is calculated:

Kk = P−k H
ᵀ
k [HkP

−
k H

ᵀ
k +R]−1

where Hk is the Jacobian of h(x), a matrix relating the error states and the mea-
surement residuals, and R is the measurement noise covariance matrix.

NASA/TM—2017-219695 11

The filter state vector is partitioned as follows:

δx =

[
δa
δbω

]
where a is the modified Gibb’s vector, described as:

a(q) =
2q

q4

The bias is then updated:

b̂+
ω,k = b̂−ω,k + δb̂ω,k

The attitude states are updated:

q+
B/I,k = qB/B̂(δak) ⊗ q−

B̂/I,k

The State Transition Matrix (Φ) is time variant and is obtained by taking the
Jacobian of the continuous-time system differential equations:

A(tk) =

[
−ω̂(t)× −I3

0 0

]
where ω(t)× is the skew-symmetric matrix operator. The State Transition matrix
(Φ) is given by:

Φ(tk, tk−1) ≡ Φk,k−1 = eA∆t = I +A∆t+
(A∆t)2

2!
=

(A∆t)3

3!
+ ...

which can be approximated to second order:

Φk,k−1 =

[
I3 − (ω̂k) × ∆t −∆t · I3

0 I3

]
The process noise matrix (Q) is given by:

Qk =

[
(σ2
ωτ · I3 + (ω̂×)(ω̂×)ᵀσ2

ω
τ3

3 + σ2
b
τ3

3 · I3) −σ2
b
τ2

2 · I3

−σ2
b
τ2

2 · I3 σ2
b τ · I3

]

where τ is the time interval between updates and σ2
i are the respective variances.

The ω̂× term is not used in the Kalman filter presented in this work.

4.3 Attitude Propagation

The attitude is propagated via the corrected ∆θ̂ measurements from the IMU:

∆θ̂k = ∆θ̃k − b̂g∆t

where ∆θ̃ is the IMU measurement and ∆t = tk − tk−1.

NASA/TM—2017-219695 12

To propagate the quaternion estimate one time step:

q̂B/I,k+1 =
[
cos
(
‖∆θ̂k‖

2

)
I4×4 + 1

‖∆θ̂k‖
sin
(
‖∆θ̂k‖

2

)
∆Θk

]
q̂B/I,k

where ∆Θk is given by:

∆Θk =


0 ∆θk(3) −∆θk(2) ∆θk(1)

−∆θk(3) 0 ∆θk(1) ∆θk(2)
∆θk(2) −∆θk(1) 0 ∆θk(3)

−∆θk(1) −∆θk(2) −∆θk(3) 0


4.4 Covariance Propagation

The covariance can be propagated at slower rate than the attitude and the rate of
IMU output if the attitude is slowly changing. It is assumed that ω is small and the
attitude is slowly changing over the elapsed time:

P−k+1 = Φk+1,kPkΦ
ᵀ
k+1,k +Qk+1

4.5 State Update and Reset

The estimated covariance at time t is used to find the Kalman gains. The Kalman
gains are found as:

Kk = P−k H
ᵀ
k [HkP

−
k H

ᵀ
k +Rk]

−1

where H and R are defined for the measurement being processed. The correction
to the error states at time t is given by:

δx̂k = Kkδzk

The covariance is then updated by using Joseph’s form and enforcing symmetry:

P+
k = (I −KkHk)P

−
k (I −KkHk)

ᵀ +KkRkK
ᵀ
k

Psym =
1

2
(P + P ᵀ)

4.6 Sensor Signal Simulation Integration

The imEKF was developed for the Integrated Radio and Optical Communication
(IROC) project ([8], [9]). It has the capability of processing either hardware data
or a data file. It can also process either delta Euler angles (change in angles) or
angle rates IMU inputs. Currently, the filter is set to process delta angles, instead
of angle rates, and it is configured to read simulated hardware values from a data
file. The system has been setup and tested with real hardware on the IMU side as
well. The ST has been simulated.

The Python sensors signal simulation file emulates hardware data, with one
packet being sent at a time to the imEKF. Since the filter was set up to work in the
‘data file mode,’ some minor modifications were required in order to implement the

NASA/TM—2017-219695 13

incoming UDP Python data in the imEKF code. Nothing of the imEKF algorithm
was modified, other than the type of input data and the way the code is receiving
the signal.

The original filter is still under revision and not ready for distribution, however,
its results have been validated with flight data from WASP (Wallops Arc Second
Pointer) mission.[8] After the implementation of the sensor signal simulation data
in the filter, results were similar to the original setup. The filter modifications are
detailed in the following subsections.

5 Results

The sensor signal simulation file was tested and validated after integration with the
imEKF. The communication bridges in Python and MATLAB 2010a were successful.
The communication link was established and validated.

5.1 The Python Setup for the UDP bridge validation:

Table 1 shows a summary of the testing setup.

� ST true signal UDP.py file sets remote port (RemPort) to 21000 (sensor sig-
nal simulation file).

� The sensor signal simulation file (sensors signal UDP.py) sets its RemPort
to 20000 (the imEKF file) and its local port (LocalPort) to 21000.

� The packet inside the sensor signal simulation file (dataSend) packs a list that
contains a quaternion, a time elapsed information, the star tracker time stamp,
the IMU time stamp, and the IMU output angles, in this order. The packet
size is 80 bytes.

� The imEKF file (attest ekf UDP.py) receives the data packets at port 20000
(LocalPort) and sends out estimation quaternion and error to remote port
25000 (MATLAB simulation file).

� All time information is POSIX time, double precision.

� Time intervals for transmission are set to the IMU frequency (100 Hz).

Python Validation Test Setup

File name Data received Data sent Data size Parameters

ST true signal UDP none [tst, q̄t, qt] 40B RP = 21000
sensors signal UDP [tst, q̄t, qt] [q̄d, qd, dt, tst, timu, φ, θ, ψ] 80B RP = 20000

LP = 21000
attest ekf UDP [q̄d, qd, dt, tst, timu, φ, θ, ψ] [dq̄, dq, dφ, dθ, dψ] 64B RP = 25000

Table 1: Test conditions for the UDP bridge code validation

where ‘RP’ and ‘LP’ stand for remote and local ports; the subscripts ‘st’, ‘t’,
and ‘d’ stand for star tracker, true values, and dirty (data with errors and noise); q̄

NASA/TM—2017-219695 14

and q represent the vector part of the quaternion and its scalar part, respectively;
φ, θ, and ψ are the Euler angles yaw, pitch, and roll, respectively; and finally, di’s
are the errors.

5.2 MATLAB Setup for the UDP bridge validation:

� Local port was set to 25000.

� Remote port was set to 21000 to send info to the sensor signal simulation in
Python and close the communication loop. Currently, the file ST true signal

UDP.py is replacing the true attitude trajectory signal coming from MATLAB
because the integration with the simulation in MATLAB has not yet been
done.

� The Soft Real Time block establishes the data flow speed. It is currently set
to 100 Hz, which is the IMU frequency.

5.3 Sensors signal simulation validation results

Figure 5 shows the quaternion error converging to [0,0,0,1], in left-hand quaternion
format (the scalar term is the last).The total simulation time was 2000 seconds.
Figure 6 shows the quaternion errors converted to Euler angles format, which is a
more intuitive way of observing the errors. The angles were obtained by using a
quaternion-Euler angles transformation matrix. Figure 7 shows that it takes about
3 seconds for the scalar term error to converge to 1, while the other 3 terms take
around 40 seconds to converge to zero, which is roughly within the range of 0.1%
to 2% of the total simulation time. It was noticed, however, that the settling time
varies according to simulation time. The filter tends to give much smaller settling
times as the simulation time increases.

NASA/TM—2017-219695 15

Figure 5: Quaternion error estimation by the imEKF.

Figure 6: Euler angles error convergence.

NASA/TM—2017-219695 16

Figure 7: Quaternion error converging time.

6 Conclusion

A Pointing System Simulation Toolbox (PSST) was developed to enable a high-
fidelity for a Balloon Mission Simulator (BMS). The PSST consists of a star tracker
and inertial measurement unit signal generator, a communication bridge, and an
indirect-multiplicative extended Kalman filter (imEKF). Step-by-step instructions
on how to operate the PSST were given. The PSST performance was verified to be
similar to the standalone imEKF results. The PSST is ready for integration with
the BMS.

NASA/TM—2017-219695 17

References

1. Dankanich, John W. et al. “Planetary Balloon-Based Science Platform
Evaluation and Program Implementation.” NASA/TM—2016-218870, 2016.

2. Boyle, M. (2017), GitHub repository, https://github.com/moble/quaternion.

3. Trawny N, Roumeliotis SI (2005) “Indirect Kalman Filter for 3D Attitude
Estimation.” Technical Report 2005-002, University of Minnesota, Department
of Computer Science and Engineering, MARS Lab.

4. Crassidis, J. L., Junkins, J. L. (2012). “Optimal Estimation of Dynamic
Systems.” Boca Raton, FL: CRC Press.

5. Maybeck, P. S. (1979). “Stochastic models, estimation, and control.” (Vol. 1).
Academic press.

6. Titterton, D., Weston, J. L. (2004). “Strapdown Inertial Navigation
Technology.” London, UK: The Institution of Engineering and Technology.

7. Markley, F. L. “Attitude Error Representations for Kalman Filtering.” Journal
of Guidance, control, and dynamics, Vol.26, No. 2, 2003, pp.282-284.

8. Swank, A. J. et al. “Beaconless Pointing for Deep-Space Optical
Communication.” 34th International Communications Satellite Systems
Conference, AIAA, Cleveland, OH, 2016.

9. Raible, D. et al. “On the Physical Realizability of Hybrid RF and Optical
Communications Platforms for Deep Space Applications.” 32nd Inernational
Communications Satellite Systems Conference, AIAA, San Diego, CA, 2014.

NASA/TM—2017-219695 18

	TM-2017-219695
	Introduction
	True Signal Generator and Sensor Signal Simulation
	Star Tracker signal simulation
	IMU signal simulation
	Euler angles and angle rates calculation with errors and noise:

	Data packet to the imEKF

	UDP Bridge
	Python-Python Bridge Settings
	Python-Simulink Bridge Settings
	The UDP Receive Block
	The UDP Send block
	The Soft Real Time Block

	Kalman Filter
	General Equations
	Filter Formulation
	Attitude Propagation
	Covariance Propagation
	State Update and Reset
	Sensor Signal Simulation Integration

	Results
	The Python Setup for the UDP bridge validation:
	MATLAB Setup for the UDP bridge validation:
	Sensors signal simulation validation results

	Conclusion
	References

