214 research outputs found

    Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    Full text link
    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that is currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates.Comment: Submitted to PR

    Relativistic Jets in the Radio Reference Frame Image Database. II. Blazar Jet Accelerations from the First 10 Years of Data (1994-2003)

    Get PDF
    We analyze blazar jet apparent speeds and accelerations from the RDV series of astrometric and geodetic very long baseline interferometry (VLBI) experiments. From these experiments, we have produced and analyzed 2753 global VLBI images of 68 sources at 8 GHz with a median beam size of 0.9 milliarcseconds (mas) and a median of 43 epochs per source. From this sample, we analyze the motions of 225 jet components in 66 sources. The distribution of the fastest measured apparent speed in each source has a median of 8.3c and a maximum of 44c. Sources in the 2FGL Fermi LAT catalog display higher apparent speeds than those that have not been detected. On average, components farther from the core in a given source have significantly higher apparent speeds than components closer to the core; for example, for a typical source, components at ~3 mas from the core (~15 pc projected at z ~ 0.5) have apparent speeds about 50% higher than those of components at ~1 mas from the core (~5 pc projected at z ~ 0.5). We measure accelerations of components in orthogonal directions parallel and perpendicular to their average velocity vector. Parallel accelerations have significantly larger magnitudes than perpendicular accelerations, implying that observed accelerations are predominantly due to changes in the Lorentz factor (bulk or pattern) rather than projection effects from jet bending. Positive parallel accelerations are significantly more common than negative ones, so the Lorentz factor (bulk or pattern) tends to increase on the scales observed here. Observed parallel accelerations correspond to modest source frame increases in the bulk or pattern Lorentz factor

    Calibration and Control of a Redundant Robotic Workcell for Milling Tasks

    Full text link
    This article deals with the tuning of a complex robotic workcell of eight joints devoted to milling tasks. It consists of a KUKA (TM) manipulator mounted on a linear track and synchronised with a rotary table. Prior to any machining, the additional joints require an in situ calibration in an industrial environment. For this purpose, a novel planar calibration method is developed to estimate the external joint configuration parameters by means of a laser displacement sensor and avoiding direct contact with the pattern. Moreover, a redundancy resolution scheme on the joint rate level is integrated within a computer aided manufacturing system for the complete control of the workcell during the path tracking of a milling task. Finally, the whole system is tested in the prototyping of an orographic model.Andres De La Esperanza, FJ.; Gracia Calandin, LI.; Tornero Montserrat, J. (2011). Calibration and Control of a Redundant Robotic Workcell for Milling Tasks. International Journal of Computer Integrated Manufacturing. 24(6):561-573. doi:10.1080/0951192X.2011.566284S56157324

    Negotiating the transition from adolescence to motherhood: Coping with prenatal and parenting stress in teenage mothers in Mulago hospital, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adolescence is a transitional stage from childhood to adulthood that is characterized by physical, physiological, psychosocial and behavioral changes that are influenced to a large extent by the age, culture and socialization of the individual. To explore what adolescent mothers perceive as their struggles during the period of transition from childhood to parenthood (through motherhood) and to describe strategies employed in coping with stress of pregnancy, motherhood and parenthood.</p> <p>Methods</p> <p>Longitudinal qualitative study involving twenty two in-depth interviews and six focus group discussions among pregnant adolescents who were followed from pregnant to delivery, from January 2004 to August 2005. Participant were selected by theoretical sampling and data was analyzed using grounded theory.</p> <p>Results</p> <p>Overall, young adolescents reported more anxiety, loss of self esteem (when they conceived), difficulty in accessing financial, moral and material support from parents or partners and stigmatization by health workers when they sought care from health facilities. Three strategies by which adolescent mothers cope with parenting and pregnancy stress that were described as utilizing opportunities (thriving), accommodating the challenges (bargaining and surviving), or failure (despairing), and varied in the extent to which they enabled adolescents to cope with the stress.</p> <p>Conclusion</p> <p>Adolescents on the transition to motherhood have variable needs and aspirations and utilize different strategies to cope with the stress of pregnancy and parenthood.</p

    Implementation of a Distributed Architecture for Managing Collection and Dissemination of Data for Fetal Alcohol Spectrum Disorder

    Get PDF
    We implemented a distributed system for management of data for an international collaboration studying Fetal Alcohol Spectrum Disorders (FASD). Subject privacy was protected, researchers without dependable Internet access were accommodated, and researchers’ data were shared globally. Data dictionaries codified the nature of the data being integrated, data compliance was assured through multiple consistency checks, and recovery systems provided a secure, robust, persistent repository. The system enabled new types of science to be done, using distributed technologies that are expedient for current needs while taking useful steps towards integrating the system in a future grid-based cyberinfrastructure. The distributed architecture, verification steps, and data dictionaries suggest general strategies for researchers involved in collaborative studies, particularly where data must be de-identified before being shared. The system met both the collaboration’s needs and the NIH Roadmap’s goal of wide access to databases that are robust and adaptable to researchers’ needs

    Implementation of a Shared Data Repository and Common Data Dictionary for Fetal Alcohol Spectrum Disorders Research

    Get PDF
    Many previous attempts by fetal alcohol spectrum disorders researchers to compare data across multiple prospective and retrospective human studies have failed due to both structural differences in the collected data as well as difficulty in coming to agreement on the precise meaning of the terminology used to describe the collected data. Although some groups of researchers have an established track record of successfully integrating data, attempts to integrate data more broadly amongst different groups of researchers have generally faltered. Lack of tools to help researchers share and integrate data has also hampered data analysis. This situation has delayed improving diagnosis, intervention, and treatment before and after birth. We worked with various researchers and research programs in the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CI-FASD) to develop a set of common data dictionaries to describe the data to be collected, including definitions of terms and specification of allowable values. The resulting data dictionaries were the basis for creating a central data repository (CI-FASD Central Repository) and software tools to input and query data. Data entry restrictions ensure that only data which conform to the data dictionaries reach the CI-FASD Central Repository. The result is an effective system for centralized and unified management of the data collected and analyzed by the initiative, including a secure, long-term data repository. CI-FASD researchers are able to integrate and analyze data of different types, collected using multiple methods, and collected from multiple populations, and data are retained for future reuse in a secure, robust repository
    corecore