223 research outputs found

    Whitepaper : Defining and investigating cognitive reserve, brain reserve, and brain maintenance

    Get PDF
    Several concepts, which in the aggregate get might be used to account for "resilience" against age- and disease-related changes, have been the subject of much research. These include brain reserve, cognitive reserve, and brain maintenance. However, different investigators have use these terms in different ways, and there has never been an attempt to arrive at consensus on the definition of these concepts. Furthermore, there has been confusion regarding the measurement of these constructs and the appropriate ways to apply them to research. Therefore the reserve, resilience, and protective factors professional interest area, established under the auspices of the Alzheimer's Association, established a whitepaper workgroup to develop consensus definitions for cognitive reserve, brain reserve, and brain maintenance. The workgroup also evaluated measures that have been used to implement these concepts in research settings and developed guidelines for research that explores or utilizes these concepts. The workgroup hopes that this whitepaper will form a reference point for researchers in this area and facilitate research by supplying a common language.Peer reviewe

    Musical practice and cognitive aging: two cross-sectional studies point to phonemic fluency as a potential candidate for a use-dependent adaptation

    Full text link
    Because of permanent use-dependent brain plasticity, all lifelong individuals' experiences are believed to influence the cognitive aging quality. In older individuals, both former and current musical practices have been associated with better verbal skills, visual memory, processing speed, and planning function. This work sought for an interaction between musical practice and cognitive aging by comparing musician and non-musician individuals for two lifetime periods (middle and late adulthood). Long-term memory, auditory-verbal short-term memory, processing speed, non-verbal reasoning, and verbal fluencies were assessed. In Study 1, measures of processing speed and auditory-verbal short-term memory were significantly better performed by musicians compared with controls, but both groups displayed the same age-related differences. For verbal fluencies, musicians scored higher than controls and displayed different age effects. In Study 2, we found that lifetime period at training onset (childhood vs. adulthood) was associated with phonemic, but not semantic, fluency performances (musicians who had started to practice in adulthood did not perform better on phonemic fluency than non-musicians). Current frequency of training did not account for musicians' scores on either of these two measures. These patterns of results are discussed by setting the hypothesis of a transformative effect of musical practice against a non-causal explanation

    APOE-ε4 Shapes the Cerebral Organization in Cognitively Intact Individuals as Reflected by Structural Gray Matter Networks

    Get PDF
    Gray matter networks (GMn) provide essential information on the intrinsic organization of the brain and appear to be disrupted in Alzheimer’s disease (AD). Apolipoprotein E (APOE)-ε4 represents the major genetic risk factor for AD, yet the association between APOE-ε4 and GMn has remained unexplored. Here, we determine the impact of APOE-ε4 on GMn in a large sample of cognitively unimpaired individuals, which was enriched for the genetic risk of AD. We used independent component analysis to retrieve sources of structural covariance and analyzed APOE group differences within and between networks. Analyses were repeated in a subsample of amyloid-negative subjects. Compared with noncarriers and heterozygotes, APOE-ε4 homozygotes showed increased covariance in one network including primarily right-lateralized, parietal, inferior frontal, as well as inferior and middle temporal regions, which mirrored the formerly described AD-signature. This result was confirmed in a subsample of amyloid-negative individuals. APOE-ε4 carriers showed reduced covariance between two networks encompassing frontal and temporal regions, which constitute preferential target of amyloid deposition. Our data indicate that, in asymptomatic individuals, APOE-ε4 shapes the cerebral organization in a way that recapitulates focal morphometric alterations observed in AD patients, even in absence of amyloid pathology. This suggests that structural vulnerability in neuronal networks associated with APOE-ε4 may be an early event in AD pathogenesis, possibly upstream of amyloid deposition

    Greater default-mode network abnormalities compared to high order visual processing systems in Amnestic Mild Cognitive Impairment. An integrated multi-modal MRI study.

    Get PDF
    We conducted an integrated multi-modal magnetic resonance imaging (MRI) study based on functional MRI (fMRI) data during a complex but cognitively preserved visual task in 15 amnestic mild cognitive impairment (a-MCI) patients and 15 Healthy Elders (HE). Independent Component Analysis of fMRI data identified a functional network containing an Activation Task Related Pattern (ATRP), including regions of the dorsal and ventral visual stream, and a Deactivation Task Related Pattern network (DTRP), with high spatial correspondence with the default-mode network (DMN). Gray matter (GM) volumes of the underlying ATRP and DTRP cortical areas were measured, and probabilistic tractography (based on diffusion MRI) identified fiber pathways within each functional network. For the ATRP network, a-MCI patients exhibited increased fMRI responses in inferior-ventral visual areas, possibly reflecting compensatory activations for more compromised dorsal regions. However, no significant GM or white matter group differences were observed within the ATRP network. For the DTRP/DMN, a-MCI showed deactivation deficits and reduced GM volumes in the posterior cingulate/precuneus, excessive deactivations in the inferior parietal lobe, and less fiber tract integrity in the cingulate bundles. Task performance correlated with DTRP-functionality in the HE group. Besides allowing the identification of functional reorganizations in the cortical network directly processing the task-stimuli, these findings highlight the importance of conducting integrated multi-modal MRI studies in MCI based on spared cognitive domains in order to identify functional abnormalities in critical areas of the DMN and their precise anatomical substrates. These latter findings may reflect early neuroimaging biomarkers in dementia

    Decreased Default Mode Network connectivity correlates with age-associated structural and cognitive changes

    Get PDF
    Ageing entails cognitive and motor decline as well as brain changes such as loss of gray (GM) and white matter (WM) integrity, neurovascular and functional connectivity alterations. Regarding connectivity, reduced resting-state fMRI connectivity between anterior and posterior nodes of the Default Mode Network (DMN) relates to cognitive function and has been postulated to be a hallmark of ageing. However, the relationship between age-related connectivity changes and other neuroimaging-based measures in ageing is fragmentarily investigated. In a sample of 116 healthy elders we aimed to study the relationship between antero-posterior DMN connectivity and measures of WM integrity, GM integrity and cerebral blood flow (CBF), assessed with an arterial spin labeling sequence. First, we replicated previous findings demonstrating DMN connectivity decreases in ageing and an association between antero-posterior DMN connectivity and memory scores. The results showed that the functional connectivity between posterior midline structures and the medial prefrontal cortex was related to measures of WM and GM integrity but not to CBF. Gray and WM correlates of anterio-posterior DMN connectivity included, but were not limited to, DMN areas and cingulum bundle. These results resembled patterns of age-related vulnerability which was studied by comparing the correlates of antero-posterior DMN with age-effect maps. These age-effect maps were obtained after performing an independent analysis with a second sample including both young and old subjects. We argue that antero-posterior connectivity might be a sensitive measure of brain ageing over the brain. By using a comprehensive approach, the results provide valuable knowledge that may shed further light on DMN connectivity dysfunctions in ageing

    Cognitive Reserve Proxies Relate to Gray Matter Loss in Cognitively Healthy Elderly with Abnormal Cerebrospinal Fluid Amyloid-β Levels

    Get PDF
    Cognitive reserve capacity may increase tolerance of neurodegenerative processes. However, its role regarding amyloid-B (AB 42) deposition in cognitively normal subjects is not well understood. We aimed to investigate the association between areas showing A 42-related structural changes and cognitive reserve proxies in cognitively intact subjects showing normal or abnormal AB 42 cerebrospinal fluid (CSF) concentrations. Thirty-three subjects (aged 55-85) underwent lumbar puncture and high resolution anatomical magnetic resonance imaging analyzed by voxel-based morphometry and cortical thickness procedures. Subjects with abnormal A 42 CSF levels showed significant left hippocampal atrophy and greater cortical thinning in parietal, temporal, and frontal regions (including the supramarginal and the anterior cingulate gyrus) compared to subjects with normalA 42 CSF levels. Using a multivariate general linear model, we investigated the relationship between these areas and cognitive reserve proxies. We found a significant relationship between decreased volume of the left hippocampus or decreased cortical thickness of the right supramarginal gyrus and higher cognitive reserve proxies only in the group with abnormal A 42 CSF levels. Thus, subjects with abnormal A 42 CSF levels (which may be at a higher risk of developing Alzheimer's disease) and with high scores on cognitive reserve proxies may be tolerating a more advanced neurodegenerative process in critical cortical and subcortical regions. The present results emphasize the relevance of evaluating cognitive reserve proxies, as well as the importance of using neuroimaging techniques for early diagnosis in individuals with higher reserve

    Cross-sectional and longitudinal association of sleep and Alzheimer biomarkers in cognitively unimpaired adults

    Full text link
    Sleep abnormalities are prevalent in Alzheimer's disease, with sleep quality already impaired at its preclinical stage. Epidemiological and experimental data point to sleep abnormalities contributing to the risk of Alzheimer's disease. However, previous studies are limited by either a lack of Alzheimer's disease biomarkers, reduced sample size or cross-sectional design. Understanding if, when, and how poor sleep contributes to Alzheimer's disease progression is important so that therapies can be targeted to the right phase of the disease. Using the largest cohort to date, the European Prevention of Alzheimer's Dementia Longitudinal Cohort Study, we test the hypotheses that poor sleep is associated with core Alzheimer's disease CSF biomarkers cross-sectionally and predicts future increments of Alzheimer's disease pathology in people without identifiable symptoms of Alzheimer's disease at baseline. This study included 1168 adults aged over 50 years with CSF core Alzheimer's disease biomarkers (total tau, phosphorylated tau and amyloid-beta), cognitive performance, and sleep quality (Pittsburgh sleep quality index questionnaire) data. We used multivariate linear regressions to analyse associations between core Alzheimer's disease biomarkers and the following Pittsburgh sleep quality index measures: total score of sleep quality, binarized score (poor sleep categorized as Pittsburgh sleep quality index > 5), sleep latency, duration, efficiency and disturbance. On a subsample of 332 participants with CSF taken at baseline and after an average period of 1.5 years, we assessed the effect of baseline sleep quality on change in Alzheimer's disease biomarkers over time. Cross-sectional analyses revealed that poor sleep quality (Pittsburgh sleep quality index total > 5) was significantly associated with higher CSF t-tau; shorter sleep duration (9 versus 0) was associated with lower CSF amyloid-beta. Longitudinal analyses showed that greater sleep disturbances (1-9 versus 0 and >9 versus 0) were associated with a decrease in CSF Aβ42 over time. This study demonstrates that self-reported poor sleep quality is associated with greater Alzheimer's disease-related pathology in cognitively unimpaired individuals, with longitudinal results further strengthening the hypothesis that disrupted sleep may represent a risk factor for Alzheimer's disease. This highlights the need for future work to test the efficacy of preventive practices, designed to improve sleep at pre-symptomatic stages of disease, on reducing Alzheimer's disease pathology

    Comparative Analysis of Different Definitions of Amyloid-beta Positivity to Detect Early Downstream Pathophysiological Alterations in Preclinical Alzheimer

    Get PDF
    Amyloid-β (Aβ) positivity is defined using different biomarkers and different criteria. Criteria used in symptomatic patients may conceal meaningful early Aβ pathology in preclinical Alzheimer. Therefore, the description of sensitive cutoffs to study the pathophysiological changes in early stages of the Alzheimer’s continuum is critical. Here, we compare different Aβ classification approaches and we show their performance in detecting pathophysiological changes downstream Aβ pathology. We studied 368 cognitively unimpaired individuals of the ALFA+ study, many of whom in the preclinical stage of the Alzheimer’s continuum. Participants underwent Aβ PET and CSF biomarkers assessment. We classified participants as Aβ -positive using five approaches: (1) CSF Aβ42 12; (4) Aβ PET Centiloid > 30 or (5) Aβ PET Positive visual read. We assessed the correlations between Aβ biomarkers and compared the prevalence of Aβ positivity. We determined which approach significantly detected associations between Aβ pathology and tau/neurodegeneration CSF biomarkers. We found that CSF-based approaches result in a higher Aβ-positive prevalence than PET-based ones. There was a higher number of discordant participants classified as CSF Aβ-positive but PET Aβ-negative than CSF Aβ-negative but PET Aβ-positive. The CSF Aβ 42/40 approach allowed optimal detection of significant associations with CSF p-tau and t-tau in the Aβ-positive group. Altogether, we highlight the need for sensitive Aβ -classifications to study the preclinical Alzheimer’s continuum. Approaches that define Aβ positivity based on optimal discrimination of symptomatic Alzheimer’s disease patients may be suboptimal for the detection of early pathophysiological alterations in preclinical Alzheimer

    Quantitative informant- and self-reports of subjective cognitive decline predict amyloid beta PET outcomes in cognitively unimpaired individuals independently of age and APOE ε4

    Get PDF
    Introduction: Amyloid beta (Aβ) pathology is an Alzheimer's disease early hallmark. Here we assess the value of longitudinal self- and informant reports of cognitive decline to predict Aβ positron emission tomography (PET) outcome in cognitively unimpaired middle-aged individuals. Methods: A total of 261 participants from the ALFA+ study underwent [18F]flutemetamol PET and Subjective Cognitive Decline Questionnaire (SCD-Q) concurrently, and 3 years before scan. We used logistic regressions to evaluate the ability of SCD-Q scores (self and informant) to predict Aβ PET visual read, and repeated analysis of variance to assess whether changes in SCD-Q scores relate to Aβ status. Results: Self-perception of decline in memory (odds ratio [OR] = 1.2), and informant perception of executive decline (OR = 1.6), increased the probability of a positive scan. Informant reports 3 years before scanning predicted Aβ PET outcome. Longitudinal increase of self-reported executive decline was predictive of Aβ in women (P = .003). Discussion: Subjective reports of cognitive decline are useful to predict Aβ and may improve recruitment strategies

    Brain alterations in the early Alzheimer's continuum with amyloid-β, tau, glial and neurodegeneration CSF markers

    Get PDF
    Higher grey matter volumes/cortical thickness and fluorodeoxyglucose uptake have been consistently found in cognitively unimpaired individuals with abnormal Alzheimer's disease biomarkers compared with those with normal biomarkers. It has been hypothesized that such transient increases may be associated with neuroinflammatory mechanisms triggered in response to early Alzheimer's pathology. Here, we evaluated, in the earliest stages of the Alzheimer's continuum, associations between grey matter volume and fluorodeoxyglucose uptake with CSF biomarkers of several pathophysiological mechanisms known to be altered in preclinical Alzheimer's disease stages. We included 319 cognitively unimpaired participants from the ALFA+ cohort with available structural MRI, fluorodeoxyglucose PET and CSF biomarkers of amyloid-β and tau pathology (phosphorylated tau and total tau), synaptic dysfunction (neurogranin), neuronal and axonal injury (neurofilament light), glial activation (soluble triggering receptor on myeloid cells 2, YKL40, GFAP, interleukin-6 and S100b) and α-synuclein using the Roche NeuroToolKit. We first used the amyloid-β/tau framework to investigate differences in the neuroimaging biomarkers between preclinical Alzheimer's disease stages. Then, we looked for associations between the neuroimaging markers and all the CSF markers. Given the non-negative nature of the concentrations of CSF biomarkers and their high collinearity, we clustered them using non-negative matrix factorization approach (components) and sought associations with the imaging markers. By groups, higher grey matter volumes were found in the amyloid-β-positive tau-negative participants with respect to the reference amyloid-β-negative tau-negative group. Both amyloid-β and tau-positive participants showed higher fluorodeoxyglucose uptake than tau-negative individuals. Using the obtained components, we observed that tau pathology accompanied by YKL-40 (astrocytic marker) was associated with higher grey matter volumes and fluorodeoxyglucose uptake in extensive brain areas. Higher grey matter volumes in key Alzheimer-related regions were also found in association with two other components characterized by a higher expression of amyloid-β in combination with different glial markers: one with higher GFAP and S100b levels (astrocytic markers) and the other one with interleukin-6 (pro-inflammatory). Notably, these components' expression had different behaviours across amyloid-β/tau stages. Taken together, our results show that CSF amyloid-β and phosphorylated tau, in combination with different aspects of glial response, have distinctive associations with higher grey matter volumes and increased glucose metabolism in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and fluorodeoxyglucose uptake at the earliest stages of the Alzheimer's continuum, which may revert later on the course of the disease when neurodegeneration drives structural and metabolic cerebral changes
    • …
    corecore