5,123 research outputs found

    Interferon-Îł induces immunoproteasomes and the presentation of MHC I-associated peptides on human salivary gland cells.

    Get PDF
    A prominent histopathological feature of SjÜgren's syndrome, an autoimmune disease, is the presence of lymphocytic infiltrates in the salivary and lachrymal glands. Such infiltrates are comprised of activated lymphocytes and macrophages, and known to produce multiple cytokines including interferon-gamma (IFN-γ). In this study, we have demonstrated that IFN-γ strongly induces the expression of immunoproteasome beta subunits (β1i, β2i and β5i) and immunoproteasome activity but conversely inhibits the expression of proteasome beta subunits (β1, β2 and β5) in human salivary gland (HSG) cells. Mass spectrometric analysis has revealed potential MHC I-associated peptides on the HSG cells, including a tryptic peptide derived from salivary amylase, due to IFN-γ stimulation. These results suggest that IFN-γ induces immunoproteasomes in HSG cells, leading to enhanced presentation of MHC I-associated peptides on cell surface. These peptide-presenting salivary gland cells may be recognized and targeted by auto-reactive T lymphocytes. We have also found that lactacystin, a proteasome inhibitor, inhibits the expression of β1 subunit in HSG cells and blocks the IFN-γ-induced expression of β1i and immunoproteasome activity. However, the expression of β2i and β5i in HSG cells is not affected by lactacystin. These results may add new insight into the mechanism regarding how lactacystin blocks the action of proteasomes or immunoproteasomes

    On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Get PDF
    We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL). A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL.We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer

    Gate induced enhancement of spin-orbit coupling in dilute fluorinated graphene

    Get PDF
    We analyze the origin of spin-orbit coupling (SOC) in fluorinated graphene using Density Functional Theory (DFT) and a tight-binding model for the relevant orbitals. As it turns out, the dominant source of SOC is the atomic spin-orbit of fluorine adatoms and not the impurity induced SOC based on the distortion of the graphene plane as in hydrogenated graphene. More interestingly, our DFT calculations show that SOC is strongly affected by both the type and concentrations of the graphene's carriers, being enhanced by electron doping and reduced by hole doping. This effect is due to the charge transfer to the fluorine adatom and the consequent change in the fluorine-carbon bonding. Our simple tight-binding model, that includes the SOC of the 2p2p orbitals of F and effective parameters based on maximally localized Wannier functions, is able to account for the effect. The strong enhancement of the SOC induced by graphene doping opens the possibility to tune the spin relaxation in this material.Comment: 9 pages, 8 figure

    Variable stars in the globular cluster NGC 7492. New discoveries and physical parameters determination

    Get PDF
    We have performed a photometric V, R, I CCD time-series analysis with a baseline of ~8 years of the outer-halo globular cluster NGC 7492 with the aim of searching for new variables and using these (and the previously known variables) to determine the physical parameters of interest for the cluster (e.g. metallicity, absolute magnitude of the horizontal branch, distance, etc.). We use difference image analysis (DIA) to extract precise light curves in the relatively crowded star field, especially towards the densely populated central region. Several approaches are used for variability detection that recover the known variables and lead to new discoveries. We determine the physical parameters of the only RR0 star using light curve Fourier decomposition analysis. We find one new long period variable and two SX Phe stars in the blue straggler region. We also present one candidate SX Phe star which requires follow-up observations. Assuming that the SX Phe stars are cluster members and using the period-luminosity relation for these stars, we estimate their distances as ~25.2+-1.8 and 26.8+-1.8 kpc, and identify their possible modes of oscillation. We refine the periods of the two RR Lyrae stars in our field of view. We find that the RR1 star V2 is undergoing a period change and possibly exhibits the Blazhko effect. Fourier decomposition of the light curve of the RR0 star V1 allows us to estimate the metallicity [Fe/H]_ZW-1.68+-0.10 or [Fe/H]_UVES-1.64+-0.13, log-luminosity ~1.76+-0.02, absolute magnitude ~0.38+-0.04 mag, and true distance modulus of ~16.93+-0.04 mag, which is equivalent to a distance of ~24.3+-0.5 kpc. All of these values are consistent with previous estimates in the literature.Comment: 12 pages, 13 figures, 6 tables, accepted for publication in A&
    • …
    corecore