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Gate-induced enhancement of spin-orbit coupling in dilute fluorinated graphene
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We analyze the origin of spin-orbit coupling (SOC) in fluorinated graphene using density functional theory
(DFT) and a tight-binding model for the relevant orbitals. As it turns out, the dominant source of SOC is the
atomic spin-orbit of fluorine adatoms and not the impurity-induced SOC based on the distortion of the graphene
plane as in hydrogenated graphene. More interestingly, our DFT calculations show that SOC is strongly affected
by both the type and concentrations of the graphene’s carriers, being enhanced by electron doping and reduced
by hole doping. This effect is due to the charge transfer to the fluorine adatom and the consequent change in
the fluorine-carbon bonding. Our simple tight-binding model, which includes the SOC of the 2p orbitals of F
and effective parameters based on maximally localized Wannier functions, is able to account for the effect. The
strong enhancement of the SOC induced by graphene doping opens the possibility to tune the spin relaxation in
this material.
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I. INTRODUCTION

Spin-based transport phenomena in graphene is a flourish-
ing area of research due to the expected long spin relaxation
lengths resulting from the small spin-orbit coupling (SOC)
of carbon atoms and the high carrier mobility. Due to these
exceptional properties, the great potential of graphene for the
study of new fundamental phenomena and for applications in
nanoelectronics is now extended to the study of spin-dependent
phenomena with possible applications in spintronics [1–4].
In this way the two-dimensional material, with unusual
electronic properties, became a model system in which the
big challenge is to control and manipulate both the charge and
the spin degrees of freedom. Concerning the spin properties,
the actual value of the spin relaxation rate of graphene
carriers is still a controversial issue: while the spin relaxation
times were initially thought to be very long [5–9], different
experiments [10–15] suggest that they are much shorter than
the theoretical predictions. This apparent controversy has
recently been challenged by the way experiments have been
interpreted [16].

Whatever the source of the spin relaxation mechanism,
an important issue for spintronics applications is the ability
to control it [3,4]. Sources of spin relaxation in graphene
are usually attributed to magnetic defects (vacancies [17–22]
or adatoms [9,23–37]), to the presence of extrinsic (adatom
induced) SOC [9,38,39], ripples [40], or, more recently, to a
combined effect of spin-orbit and pseudospin physics [41].

Adatoms, in particular, provide a possible course to engi-
neer spin-based effects. The nature of the SOC, however, might
be different for different adatoms. Very light atoms, such as H,
which are adsorbed on top of a single C atom and have a small
intrinsic atomic SOC, introduce SOC to the graphene carriers
by distorting the otherwise flat graphene sheet [9]. This is due
to the sp3-like structure adopted by the hybridized C atom
that induces a local coupling between the carbon pz and σ

orbitals. In that case, the effect of the atomic SOC of the C
atoms changes (locally) from being a second-order effect to a
first-order one with the corresponding increase of the effective
spin-flip processes in the graphene carriers. A characteristic

of this mechanism is that the resulting SOC is proportional to
the local lattice distortion [9]. On the other hand, more heavy
atoms can introduce spin effects by processes that involve
their own intrinsic SOC, i.e., where the spin-flip occurs in the
adatom orbitals and not on the C atoms. In the general case
both mechanisms are present.

The fluorine atom on graphene is adsorbed in a top
position. It bounds covalently to the C atom below it (we
will refer to it as the C0 atom), therefore introducing a local
distortion in the graphene lattice. However, owing to its strong
electronegativity, there is a charge transfer from the graphene
sheet to the F adatom [36,42,43]. This charge transfer to the F
adatom can be controlled by changing the carrier concentration
of graphene. Associated with this, there is an sp3-sp2-like
crossover of the hybridization of the C0 atom [42,43]. Since
this crossover causes a strong reduction of the lattice distortion,
one would expect, as suggested by the scenario described in
Ref. [9], that the induced SOC associated with it would also
decrease, thus providing a controllable way to reduce the spin
relaxation.

Here we show, using density functional theory (DFT)
calculations, that the SOC in dilute fluorinated graphene is
indeed strongly affected by the concentration of the graphene’s
carriers but, contrary to the expectations of the distortion-
induced mechanism mentioned above [9], it is enhanced by
electron doping and reduced by hole doping. This result is
validated by a simple tight-binding model, which accounts
both qualitatively and quantitatively for the effect, constructed
from the Wannier functions parameters obtained from the
ab initio calculations and that includes the F atomic SO as the
only source of spin-orbit coupling. In this way, our microscopic
model not only allows us to relate the F atomic SO with the
observed spin splitting of the bands but also explains its behav-
ior with doping. Our results then extends those of Ref. [39],
where the relevant role of the fluorine SOC was identified for
the neutral case, and give further justification to their effective
model from a multiorbital tight-binding perspective.

The rest of the work is organized as follows: DFT results
for the band structure and the projected density of states
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FIG. 1. (a) Electronic band structure for a 7 × 7 supercell containing 98 C atoms and a single F adatom. The horizontal dashed line indicates
the Fermi energy EF which is set to zero. (b)–(e) Projected density of states (PDOS) onto the pz (solid line) and px(y) orbitals (dashed line) for
the F adatom, the carbon bound to it (C0), one of the three nearest C atoms (Cn) of the latter, and a “bulk” (far from the adatom) carbon atom
(Cb). α, β, and γ label the closest bands to EF. The PDOS calculation uses a Gaussian smearing of 0.005 Ry.

(PDOS) for different geometries are presented in Sec. II. A
tight-binding model based on the calculations of the maximally
localized Wannier is introduced in Sec. III to discuss the
microscopic mechanism leading to SOC. We finally conclude
in Sec. IV.

II. DFT RESULTS

The DFT calculations were performed with the Quantum
ESPRESSO package [44] employing density functional theory
and the Perdew-Burke-Ernzerhoff (PBE) exchange-correlation
functional [45]. An ultrasoft description of the ion-electron
interaction was used [46] together with a plane-wave basis set
for the electronic wave functions and the charge density, with
energy cutoffs of 70 and 420 Ry, respectively. The electronic
Brillouin zone integration was sampled with a uniform k-point
mesh (3 × 3 × 1) and a Gaussian smearing of 0.005 Ry.
The two-dimensional behavior of graphene was simulated by
adding a vacuum region of 12 Å above it. All the structures
were relaxed using a criteria of forces and stresses on atoms
of 0.005 eV/Å and 0.3 GPa, respectively. The convergence
tolerance of energy was set to 10−5 Ha (1 Ha = 27.21 eV).
To correct for the dipole moment generated in the cell and
to improve convergence with respect to the periodic cell size,
monopole and dipole corrections were considered [47]. This
is particularly important in the doped cases. Doping of the
unit cell (added/removed electrons) was compensated by a
uniformly distributed background charge.

A. Electronic band structure

Let us first analyze the band structure of fluorinated
graphene in the absence of additional doping (neutral case).
Since we are interested in describing the SOC introduced
by a single impurity (corresponding to a diluted fluorinated
graphene sample), for our DFT calculations we use supercells
as large as possible (limited by the computational resources).
The use of large supercells is also important in the case of

F to avoid long-range Coulomb interactions among impuri-
ties as F adatoms acquire some charge when absorbed on
graphene [39,42,43].

Figure 1(a) shows the DFT electronic band structure for a
7 × 7 supercell containing 98 C atoms and a single F atom.
The Fermi energy EF has been set to zero, EF = 0. The path
in the reciprocal space is labeled using the standard notation for
the hexagonal Brillouin zone of the supercell lattice. Though
negligible on this scale, each band is split in two due to the
SOC—this is analyzed in detail in the next section. Since
one would naively expect to observe graphene’s Dirac cone
at the K point, it is instructive to mention why that is not
the case: our DFT supercell contains a single F atom and
consequently all impurities in our periodic system are on
the same graphene sublattice. This breaks off the sublattice
symmetry and opens a gap in the graphene spectrum [48,49].
Such gap is proportional to the impurity concentration and
hence to the supercell size. While this effect should not have
any relevance for the calculation of local parameters for a large
enough supercell, it is important to keep it in mind for a proper
interpretation of the results—the breaking of the sublattice
symmetry can be eliminated from the calculations, at the price
of increasing the F concentration or increasing the supercell
size, by including two F atoms on the supercell, one on each
sublattice.

To analyze the character of the bands, it is useful to look at
the weight of the corresponding states on the atomic orbitals
of each type of atom, that is, to look at the projected density of
states (PDOS). This is done in Fig. 1 for four different atoms
in the supercell: F (b), C0 (c), one of the three Cn carbon atoms
around C0 (d), and a “bulk” (far from the adatom) C atom (e).
The solid line corresponds to the pz orbitals while the dashed
one corresponds to the px(y) orbitals—in this energy range
the weight on the s orbitals is smaller than 0.02 eV−1. It
is apparent from the figure that the central band (labeled by
β) and the band below it (γ ) are the ones that contain the
impurity states as they carry a large weight on the pz orbitals

195408-2



GATE-INDUCED ENHANCEMENT OF SPIN-ORBIT . . . PHYSICAL REVIEW B 91, 195408 (2015)

-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

M K Γ M

E
[e

V
]

(a)

α →
β →

γ →

0 0.2 0.4 0.6 0.8 1

PDOS[eV−1]

(b) F

0 0.2 0.4 0.6 0.8 1

PDOS[eV−1]

(c) C0; ×2

0 0.2 0.4 0.6 0.8 1

PDOS[eV−1]

(d) Cn

0 0.2 0.4 0.6 0.8 1

PDOS[eV−1]

(e) Cs1; ×2

0 0.2 0.4 0.6 0.8 1

PDOS[eV−1]

(f) Cs2; ×2

FIG. 2. Same as Fig. 1 but for a 6 × 6 supercell containing 72 C atoms an a single F adatom. The last rightmost panels correspond to a C
atom far from the adatom in the same (e) and the opposite (f) sublattice. Notice that in this case there is a clear Dirac-like band and that the F
and the C0 atoms are essentially decoupled from it.

of the F adatom, the C0 atom, and its three nearest-neighbor
Cn atoms [37].

With the aim of understanding the adatom-induced SOC,
a very interesting situation occurs for supercells with a single
F and sizes of the form 3n × 3n with n an integer number. In
this case, the periodic perturbation potential induced by the
adatoms U (r), assumed to be local on each supercell, has the
right symmetry as to mix the two nonequivalent graphene’s
Dirac cones. Namely, the Fourier transform of the periodic
adatoms potential contains nonzero components Uk with k
connecting the two cones. Such admixture leads to a partial
decoupling of the graphene π band from the adatoms that
closes the gap induced by the sublattice symmetry break
and restores a single Dirac cone [50–52]. In addition, the
impurity band is more clearly developed. The corresponding
band structure is presented in Fig. 2 for a 6 × 6 supercell,
together with the PDOS. Notice that a Dirac cone can be
clearly identified and that in those bands there is essentially
no weight of the fluorine’s pz orbital which, in this energy
range, is mainly concentrated on the rather flat impurity band
[the β band in Fig. 2(a)]. This decoupling, which occurs for a
particular geometry, and though rather artificial, will help us
to separate different contributions to the SO splitting of the
bands.

B. Gate dependence of the spin-orbit splitting

We now turn our attention to the splitting of the bands
induced by the SOC and, in particular, to the effect of doping
on such splitting.

The main contribution to the SO splitting in this system
arises from the atomic SOC of the C and the F atoms. The
contribution from the C atoms is known to be a second-order
effect in flat graphene owing to the reflection symmetry of
the graphene’s plane: symmetry prohibits a direct coupling
between the pz and px(y) orbitals of adjacent C atoms—recall
that atomic SOC mixes p orbitals on the same lattice site. This
symmetry is locally broken in the presence of an adatom that
sits on top of a C atom due to the lattice distortion it introduces.
This was shown [9] to enhance the SOC by breaking the above-
mentioned selection rule. The resulting SOC is proportional
to the distortion of the lattice. The latter depends, in the case
of F adatoms, on the doping level of the graphene sheet due to

the charge transfer from the graphene to the F adatom [37,43].
Hence, one expects a strong dependence of the C contribution
to the SO splitting upon doping. Namely, since doping with
electrons (holes) reduces (enhances) the sp3 character of the
local hybridization of the C0 atom, we expect this contribution
to the SO splitting to decrease (increase).

The other source of SOC is the adatom itself. Contrary to
the case of H, the SOC in the F atom is not negligible and must
be accounted for. How this contribution changes with doping,
if it does, is however not obvious a priori.

The DFT results for the SO splitting of three bands for
the case of the 7 × 7 supercell [indicated as α, β, and γ

in Fig. 1(a)] are shown in Figs. 3(a)–3(c) for five different
doping concentrations: δn = 0,±1/2,±1 is the number of
additional electrons per unit cell (hence δn = 0 corresponds
to the neutral case). We find that the SO splitting changes for
all the bands, being enhanced by electron doping and reduced
by hole doping. This is just the opposite behavior that is
expected based on the distortion-induced SOC. We must then
conclude that the main contribution to the observed splitting is
not the atomic SO of the C atoms but the one coming from the
F adatoms [39]. To verify this, we repeated our calculation
but without including the SOC on the F—this is done by
using a scalar relativistic pseudopotential for the F atom as
implemented in the Quantum ESPRESSO code [44]. The
results are shown in Figs. 3(d)–3(f). There are two important
points to notice: (i) the magnitude of the splitting is reduced by
a factor of approximately five, consistent with the difference
in magnitude of the atomic SO between F and C (∼50 and
∼10 meV, respectively), and signaling that the main source
of SO is absent; (ii) the SO splitting shows now the expected
behavior as a function of doping for a deformation-induced
SO: it is reduced by electron doping and enhanced by hole
doping.

To further verify the origin of the SO splitting in fluorinated
graphene we have done the calculation keeping the SOC in
the F atom but using a 6 × 6 supercell that leads to the
decoupling of the π band from the adatoms as discussed
in the previous section. Quite interestingly, the bands show
now different behaviors [Figs. 4(a)–4(c)]: those with a small
weight on the fluorine’s pz orbitals (bands α and γ ) have a SO
splitting compatible in magnitude with a deformation-induced
SO and the corresponding dependence with doping. On the
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FIG. 3. (Color online) SO splitting of the α, β, and γ bands
indicated in Fig. 1(a) (7 × 7 supercell) for the cases where the SOC
of the F atom is included in the DFT calculation [(a)–(c)], and those
where it is removed [(d)–(f)] as a function of the doping, δn =
0, ±1/2, ±1 electrons per unit cell. The arrows indicate the direction
of increment of δn while the multiplication factors represent the
scaling used in the energy scale. Notice that the doping dependence
is just the opposite with and without SOC in the F atom.

other hand, the band with a large weight on the F (β) shows a
large SO splitting and the opposite doping dependence. Again,
this is confirmed by removing the SOC in F as shown in
Figs. 4(d)–4(f).

III. TIGHT-BINDING MODEL

The above results clearly demonstrate that in fluorinated
graphene the main source of SOC is the F adatoms, in
agreement with Ref. [39]. However, the origin of its strong
dependence on doping is not at all clear. To better understand
the underlying microscopic mechanism we now construct
a single-particle tight-binding model that includes the most
relevant orbitals, and later on the atomic SOC of F. Namely,
we consider a small cluster consisting of one F and four C
atoms (see Fig. 5) embedded in graphene. The Hamiltonian is
given by H = HF + HC + HFC. The first term describes the
isolated F atom

HF =
∑
ξ,σ

εpp
†
ξσpξσ +

∑
σ

εss
†
σ sσ , (1)

where p
†
ξσ creates an electron with spin σ in the 2pξ orbital

(ξ = x,y,z) and s†σ creates an electron with spin σ in the 2s

orbital. Given the symmetry of the system, it is convenient,
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FIG. 4. (Color online) SO splitting as in Fig. 3 but for the 6 × 6
supercell. Notice that only the impurity band (β) maintains the doping
dependence of the F-induced SO splitting; the rest behave as the
C-induced SOC near the 
 point.

for the definition of the hopping parameters and for the sake
of comparison with the Wannier functions described below, to
work in a hybridized basis. To this end we define the following
creation operators [9]:

f †
zσ = As†σ +

√
1 − A2 p†

zσ ,

f
†
1σ =

√
1 − A2

√
3

s†σ − A√
3

p†
zσ +

√
2

3
p†

xσ ,

f
†
2σ =

√
1 − A2

√
3

s†σ − A√
3

p†
zσ − 1√

6
p†

xσ + 1√
2
p†

yσ , (2)

f
†
3σ =

√
1 − A2

√
3

s†σ − A√
3

p†
zσ − 1√

6
p†

xσ − 1√
2
p†

yσ .

The parameter A serves to interpolate between two extreme
cases: (i) A = 0, in which case f

†
zσ = p

†
zσ while the other

orbitals, f †
iσ , correspond to the standard sp2 hybrid orbitals; (ii)

A = 1/2, where all orbitals correspond to the sp3 hybridiza-
tion, with one of them pointing in the z direction. In terms of
these orbitals, the fluorine Hamiltonian takes the form

HF =
∑

σ

εz f †
zσ fzσ +

∑
i,σ

εf f
†
iσ fiσ +

∑
i �=j,σ

t1f f
†
iσ fjσ

+
∑
i,σ

t2f (f †
zσ fiσ + f

†
iσ fzσ ), (3)
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FIG. 5. (Color online) Schematic representation of the hy-
bridized orbitals used in the tight-binding model with their hopping
matrix elements.

where i,j = 1,2,3, and

εz = (1 − A2)εp + A2εs, εf = (1 − A2)

3
εs + (2 + A2)

3
εp,

t1f = (1 − A2)

3
(εs − εp), t2f = A

√
1 − A2

√
3

(εs − εp). (4)

The Hamiltonian of the C atoms is

HC =
∑

σ

ε0 c
†
0σ c0σ +

∑
i,σ

ε1 c
†
iσ ciσ + t ′

∑
i,σ

(c†0σ ciσ + c
†
iσ c0σ )

+ t ′2
∑
i �=j,σ

c
†
iσ cjσ + Hg; (5)

here c
†
0σ and c

†
iσ (i = 1,2,3) create electrons with spin σ at

the pz orbitals of the central C atom (C0) and the side carbon
atoms (Cn), respectively, and Hg is the Hamiltonian of the rest
of the pz orbitals of the graphene sheet with energy εg and
hopping t . Finally, HFC includes the hybridization between
the F and C orbitals,

HFC = V
∑

σ

(f †
zσ c0σ + c

†
0σ fzσ )

+V ′ ∑
iσ

(f †
zσ ciσ + c

†
iσ fzσ )

+W
∑
i,σ

(f †
iσ c0σ + c

†
0σ fiσ )

+
∑
ij,σ

wij (f †
iσ cjσ + c

†
jσ fiσ ), (6)

where wij takes only two values: w1 if the f
†
i orbital “points”

towards the c
†
j orbital and w2 otherwise (see Fig. 5).

The next step is to properly estimate all the parameters:
energies of the hybridized orbitals and hopping matrix ele-
ments. This can be achieved with the help of the WANNIER90
code [53] as shown in the next section.

TABLE I. Tight-binding parameters (in eV) calculated by the
WANNIER90 program for different doping concentrations (number
of additional electrons per unit cell) in a 4 × 4 supercell. For a
description of the parameters see Fig. 5.

Doping −1 − 1
2 neutral + 1

2 +1

εz −10.43 −9.63 −8.72 −7.50 −5.40
εf −12.29 −11.45 −10.35 −8.86 −6.27
ε0 −0.08 0.25 0.38 0.31 0.36
ε1 −2.55 −1.91 −1.30 −0.80 −0.27
t ′ −2.45 −2.37 −2.31 −2.34 −2.71
t ′
2 −0.07 −0.09 −0.11 −0.09 0.13
t1f −5.34 −5.25 −5.15 −5.02 −4.85
t2f −3.99 −4.07 −4.17 −4.25 −4.33
V 3.34 3.31 3.11 2.48 1.11
V ′ −0.21 −0.18 −0.14 −0.06 0.09
W −3.47 −3.43 −3.18 −2.42 −0.88
w1 −0.54 −0.56 −0.56 −0.53 −0.42
w2 0.30 0.28 0.25 0.20 0.07
εg −2.08 −1.53 −0.99 −0.52 −0.34
t −2.85 −2.86 −2.87 −2.88 −2.90

A. Wannier functions

A simple way to build a tight-binding model from the
DFT results is to find the maximally localized Wannier
functions [54] that describe the DFT band exactly on the
energy range of interest (around EF, for instance) and
the rest of the spectrum only approximately, depending on
the number of orbitals used in the calculations. To this end,
we use the WANNIER90 code in a 4 × 4 supercell. While
our calculations include the σ orbitals between the C atoms,
required to properly describe the DFT band structure, here
we present only those parameters that are relevant for the
simplified tight-binding Hamiltonian described above which
is enough to capture the SO splitting of the energy bands
around EF. Table I presents such parameters for several doping
configurations.

The maximally localized Wannier functions obtained for
the c

†
0, c†i , f †

z , and f
†
i orbitals are shown in Fig. 6. It is apparent

from the figure that the F orbitals can be interpreted as the
hybridized atomic orbitals described above while the C0 and
Cn orbitals need to be considered as “effective” orbitals (the
former being more sp3-like and the latter as a tilted pz-like
one).

The interpretation of the F orbitals as hybridized atomic
orbitals is also supported by the following: our tight-binding
model has three parameters (εs , εp, A) from where four
parameters are obtained [cf. Eqs. (4)]. These four parameters
are calculated independently in the WANNIER90. Hence, we
can use three of them, say (εz, εf , t1f ), to calculate (εs , εp,
A) and from them the value of tcalc

2f to be compared with the
value t2f shown in Table I. Such comparison, together with
the values obtained for εs , εp, and A, is shown in Table II.
Our results show that, within this model, the main effect of
doping on the F’s orbitals is to shift their energy up as more
electrons are added to the supercell and to slightly change the
hybridization parameter A (<10%). This energy shifting is
to be expected from a naive mean-field argument as doping
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FIG. 6. (Color online) Maximally localized Wannier functions as
obtained with the WANNIER90 code and used for the tight-binding
model. They correspond to (a) c

†
0, (b) one of the c

†
i orbitals, (c) f †

z ,

and (d) one of the f
†
i orbitals.

induces a charging of the F adatom [42,43]. We would like to
point out that while with this very simple model one cannot
expect to fit the value of t2f , the calculated hopping term
(tcalc

2f ) is quite reasonable and follows the overall trend with
doping—except for the extreme hole-doping case.

It is worth noticing that while there is an overall shift of all
energies with doping, the important magnitude is their relative
shift, which is by far larger in the F atom. This is the reason
for the change of the SOC as we discuss below.

Finally, we emphasize that the present calculation was done
in a 4 × 4 supercell which is relatively small as to avoid the
finite-size effects related to the long-range Coulomb repulsion
between F adatoms [39,43]—in our case the size is limited by
the heavy computational resources needed for the calculation
of the Wannier orbitals. Therefore, we may expect that our
tight-binding parameters will not be reliable for large electron
doping, where the finite-size effects are stronger. Yet, we will
show that they provide a good description of the SO splitting
of the bands.

TABLE II. Parameters of the model Hamiltonian HF . εs , εp , and
A are calculated by fitting the values of εz, εf , and t1f obtained by
the Wannier functions method. The value of t calc

2f is derived from the
former, being consistent with the Wannier calculation.

Doping εs (eV) εp (eV) A t calc
2f (eV) t calc

2f /t2f

−1 −26.45 −6.95 0.42 −4.31 1.08
− 1

2 −25.38 −6.20 0.42 −4.24 1.04
neutral −24.17 −5.20 0.43 −4.26 1.02
+ 1

2 −22.56 −3.84 0.44 −4.29 1.01
+1 −19.95 −1.42 0.46 −4.39 1.01

B. Spin-orbit coupling

As our DFT results show that the main source of SOC
comes from the F adatom, we will include in our tight-binding
model only the atomic SOC of the F—an extension to include
the effect of the SOC on the C atoms is straightforward. Such
term is of the form HSO

F = α L · S, with L and S the orbital
angular momentum and spin operators of electrons in the p

orbitals, respectively, and the SO parameter α ∼ 50 meV for
F [39,55]. In the {px↑, py↑, pz↑, px↓, py↓, pz↓} basis it takes
the following matrix form [56,57]:

HSO
F = α

2

⎛
⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 1
i 0 0 0 0 −i

0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (7)

By adding HSO
F to the tight-binding Hamiltonian presented in

the previous section we can now compute the splitting of the
α, β, and γ bands for a given supercell and compare it with
the DFT data. This is done in Fig. 7 using the parameters of
Table I and taking α ∼ 40–50 meV. There are several points to
emphasize: (i) There is an overall good qualitative agreement,
which further corroborates our model. (ii) The value of the

0.0

0.5

1.0

M K Γ M

E
[m

eV
]

(c)
γ

0.0

0.5

1.0

E
[m

eV
]

(b)

δn β

0.0

0.5

1.0

E
[m

eV
]

×3 (a)
α

FIG. 7. (Color online) Comparison of the SO splitting of the α,
β, and γ bands obtained with the simplified tight-binding model
(solid lines) and the DFT results of Fig. 3 (dashed lines), excluding
the case of +1 electron doping. To obtain a good agreement we use
α = 40 meV while the rest of the tight-binding parameters are taken
from Table I.
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splitting and its behavior with doping is the correct one,
indicating that the F adatom is the dominant source of SOC.
(iii) Our model overestimates the effect of electron doping
(the +1 case is strongly overestimated and hence is not shown
in the figure). Presumably this is due to the finite-size effect
discussed in the previous section that affects our tight-binding
parameters. (iv) The central band (β) is the one that is better
described, as could be expected.

To better understand what are the microscopic spin-flip
processes that lead to the splitting of the bands it is useful to
take full advantage of the symmetry of the system around the
adatom and define new symmetrized orbitals as follows:

f
†
�σ = 1√

3

3∑
i=1

f
†
iσ , c

†
�σ = 1√

3

3∑
i=1

c
†
iσ , (8)

and

f
†
+σ = βf

†
1σ − f

†
2σ + β∗f †

3σ√
3

,

f
†
−σ = β2f

†
1σ + f

†
2σ + β∗2f

†
3σ√

3
,

c
†
+σ = βc

†
1σ − c

†
2σ + β∗c†3σ√

3
,

c
†
−σ = β2c

†
1σ + c

†
2σ + β∗2c

†
3σ√

3
, (9)

where β = exp(iπ/3). Note that f
†
�σ = √

1 − A2 s†σ − Ap
†
zσ

is the combination of the s and pz orbitals that is orthogonal
to f

†
zσ . In this basis, the full Hamiltonian decouples into

orthogonal subspaces with different spatial symmetry. The key
point is that this orthogonal spaces only couple through the
spin-flip term of the fluorine’s SOC. The Hamiltonian of the
rest of the graphene sheet can also be separated into two sectors
with different spatial symmetry—each one of these couple to
one of the c

†
� or c

†
± orbitals.

A scheme of the hierarchy of the hopping matrix elements in
H is shown in Fig. 8 for one of the two spin sectors—the other
one is analogous but with the time-reversal partners. Since
first-order (direct) spin-flip processes only occur between the
f

†
zσ , f †

�σ , and f
†
±σ̄ orbitals of the F adatom, any effective SOC

between C atoms must be induced by virtual processes that
involve them at intermediate steps. This is the way a spin-
splitting is induced in all bands. The scheme makes evident
a couple of things: (i) no virtual spin-flip process is allowed
between the F and the C0 atoms as they belong to the same
spin subspace, in agreement with the analysis of Ref. [39];
(ii) virtual spin-flip processes between C atoms necessarily
involve the mixing of the subspaces with opposite spatial
symmetry and hence the coupling between the f

†
±σ and the

c
†
±σ orbitals is crucial. The effect of doping enters by changing

(reducing or increasing) the energy difference between the F
and the C orbitals, making the virtual spin-flip processes more
or less effective.

Finally, it is useful to estimate from our model the effective
spin-flip coupling between the Cn atoms around C0 (i.e., an
effective term of the form �c

†
1↑c2↓ + �∗ c

†
2↓c1↑, for instance)

FIG. 8. (Color online) Scheme showing the most relevant hop-
ping parameters of Hamiltonian H. The orbital states decoupled by
symmetry only couple through the spin-flip term of the fluorine’s
SOC.

in order to compare with other models in the literature [9,39].
Following the standard procedure to eliminate the intermediate
states using Green’s functions, we get � ∼ 2 meV for the
neutral case. This effective SOC changes with doping: it
decreases up to roughly 20% for hole doping and increases up
to 60% for the cases shown in Fig. 7. This parameter is related
to the parameter �B

PIA introduced in Ref. [39]. Our result has
the same order of magnitude, indicating a large SOC induced
by the adatom, but differs by a factor ∼3.

IV. SUMMARY

We have analyzed the mechanisms governing the appear-
ance of SOC in fluorinated graphene. Our results allow us to
disentangle the different contributions of the SOC induced
on the graphene carriers and to make predictions on its
evolution with electron and hole doping. DFT calculations
of a F atom adsorbed on different graphene supercells show
significant spin splittings of the low-energy bands and give
a first indication of the dominance of the atomic SO of the
adatom in this case. The DFT results, combined with the
WANNIER90 code, allow finding the maximally localized
Wannier functions that correctly describe the bands on the
energy range of interest to build an effective tight-binding
model that includes effective π orbitals of the C atoms
and the 2s and 2p orbitals of the F atom. The so-obtained
tight-binding model fits the spin-splitting of the low-energy
bands and allows for a microscopic interpretation of the origin
of the SO effects and its doping dependence. We conclude
that the SOC in fluorinated graphene is dominated by the
intrinsic SO interaction in the F atoms, in agreement with the
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results of Ref. [39]. The charge transfer from the graphene to
the F orbitals has an important effect on the final spin-flip
coupling of the graphene carriers. This is mainly due to
the charge-transfer-induced energy shifts of the fluorine sp

orbitals that are mixed by the SOC [orbitals with energies εz

and εf in Hamiltonian (3)]. As this charge transfer can be
controlled by doping, the final SO effects can be controlled
by gating the sample. While hole doping produces a small
decrease of the SOC, electron doping can produce a significant
increase of the effect.

It is worth noting that our results show that the spin-splitting
at the K point of the Brillouin zone is always extremely
small. This is due to the symmetries of the supercells used
in the calculation and by no means implies that SO effects on
the low-energy states of samples with a random distribution
of F impurities will be negligible. To see this, consider the
single-impurity case. There, the important SO parameter is the
atomic SOC of the F atom α. As discussed in the previous
section, this parameter leads to an effective spin-flip coupling

between the C atoms, an effect that can be described by
an effective Hamiltonian including spin-flip processes in the
graphene carriers around the impurity site [39]. The spin-flip
cross section for this effective impurity model was calculated
in Ref. [9]. An important result of our work is to show that,
for fluorine impurities, the spin-flip coupling between the Cn

atoms (�) is much larger than what we could expect from the
atomic SOC of the C atoms and, even more important, that its
magnitude can be controlled by gating the sample.
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