574 research outputs found

    Hydrodynamical Models of Superfluid Turbulence

    Get PDF
    This review paper puts together some of our results concerning the application of non equilibrium Thermodynamics to superfluid liquid helium. Two of the most important situations of this quantum fluid are rotating superfluid and superfluid turbulence, both characterized by the presence of quantized vortices (vortex lines whose core is about 1 Angstrom and the quantum of circulation is h/mh/m, hh being the Plank's constant and mm the mass of helium atom). In the first part of the work a non-standard model of superfluid helium, which considers heat flux as independent variable, is briefly recalled, and compared with the well known two-fluid model, in absence of vortices, proposed by Tisza and Landau more than half a century ago. The model is generalized taking into account the presence of vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence (a particular situation in which no mass flux but only heat flux is present) and combined situations of counterflow and rotation. Since vortices are not fixed when all the hydrodynamical fields change, an additional scalar quantity, the averaged vortex line density per unit volume LL, {\it line density} for short, is introduced in the model as a new field variable and an evolution equation is written for it, both in linear and in nonlinear regimes, via Extended Thermodynamics. Finally, to encompass more general situations, the model is further extended considering the flux of vortex line density as an independent new variable. In all these models the propagation of harmonic waves is studied, motivated by the fact that vortex lines density is experimentally detected via the attenuation of second sound. A new kind of waves, vortex density waves, is also dealt with

    Mesoporous silica networks with improved diffusion and interference-rejecting properties for electroanalytical sensing

    Get PDF
    Mesoporous silica materials characterized by well-ordered microstructure and size- and shape-controlled pores have attracted much attention in the last years. These systems can be used for the development of functional thin films for advanced applications in catalysis and electrocatalysis, sensors and actuators, separation techniques, micro- and nano-electronic engineering [1-2]. In this work, \u201cinsulating\u201d and mesoporous silica films were prepared by spin coating a home-made silica sol on a cleaned ITO glass support. The mesoporosity was controlled by the use of Polystyrene (PS) latex beads with different dimensions (30-60-100 nm) as template. The number of successive multi-layer depositions was varied (1-2-3-5 layers) and after the template removal, stable, homogeneous and reproducible transparent films were obtained, characterized by an interconnected porous structure. The morphological features and the physicochemical and optical properties of the films and/or sol-precursors were studied by DLS, FE-SEM, AFM, UV-vis transmittance spectroscopy and wettability analyses. Moreover, a deep electrochemical characterization was also performed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). In particular, the use of two redox mediator probes [(K4Fe(CN)6) and (Ru(NH3)6Cl3)], presenting opposite charge and different diffusional behaviour, allowed the comprehension of the mass transport and charge transfer phenomena, evidencing the effects of spatial confinement and charge selection. In the case of \u201cinsulating\u201d films prepared without the use of PS latexes, we proved an experimental evidence for theoretical models [3] concerning electroinactive layer-modified electrodes, with a scan-rate-dependent variation of the CV shape due to a progressive increase in the diffusion coefficient inside the insulating layer. A complex balance between diverging effects (higher hydrophilicity and insulating behavior effects of silica) when increasing the numbers of layers was also observed [4]. In the case of mesoporous layers, a better electrochemical response of smaller pores and of thicker layers was found, due to two main cooperative phenomena: i) a diffusion modification from fully planar to radial-convergent at the pore-silica interface due to surface porosity; ii) the presence of pores in a hydrophilic matrix which leads to a capillary pull effects, stronger in the case of smaller hydrophilic pores. The easiness of preparation and the interesting properties of these devices pave the way towards their use in many fields, particularly trace electroanalysis in real matrices. In fact, for example, the porous and properly charged network is able to exclude interfering macromolecules (mucin in our case), preventing electrode biofouling and enhancing the performances of the sensor towards dopamine detection. References [1] M. Ogawa, Chem. Rec. 17 (2017) 217-232. [2] A. Walcarius, Chem. Soc. Rev. 42 (2013) 4098-4140. [3] D. Menshykau, R.G. Compton, Langmuir 25 (2009) 2519\u20132529. [4] V. Pifferi, L. Rimoldi, D. Meroni, F. Segrado, G. Soliveri, S. Ardizzone, L. Falciola, Electrochem. Commun. 81 (2017) 102-105

    Are developmental shifts the main driver of phenotypic evolution in Diplodus spp. (Perciformes: Sparidae)?

    Get PDF
    Background: Sparid fishes of the genus Diplodus show a complex life history. Juveniles have adaptations well suited to life in the water column. When fishes recruit into the adult population, individuals develop a radically differentiated shape that reflects their adaptation to the new benthic environment typical of the adult. A comparative analysis of ontogenetic trajectories was performed to assess the presence of divergence in the developmental pattern. By using a geometric morphometric approach, we investigated the pattern of shape variation across ontogenetic stages that span from early settlement to the adult stage in four species of the genus Diplodus. Landmarks were collected on the whole body of fishes to quantify the phenotypic variation along two well defined life stages, i.e. juvenile and adult. A comparative analysis of ontogenetic trajectories was performed to assess the presence of divergence in the developmental pattern. Subsequently, we investigated the patterns of integration and modularity as proxy for the alteration of the developmental processes. This have allowed to give an insight in morphological developmental patterns across ecologically and ontogenetically differentiated life stages and to investigate the process leading to the adult shape. Result: Our results suggest that the origin of morphological novelties in Diplodus spp. arise from shifts of the ontogenetic trajectories during development. During the settlement phase, the juveniles' morphological shapes converge towards similar regions of the morphospace. When the four species approach the transition between settlement and recruitment, we observe the lowest level of inter- and intra-specific disparity. After this transition we detect an abrupt shift of ontogenetic trajectories, i.e. the path taken by species during development, that led to highly divergent adult phenotypes. Discussion: We suggest that the evolution of new ecomorphologies, better suited to exploit different niches (pelagic vs. benthonic) and reduce inter-specific competition in Diplodus spp., are related to the shift in the ontogenetic trajectory that in turn is associated to changes in modularity and integration pattern

    Green and low cost tetracycline degradation processes by nanometric and immobilized TiO2 systems

    Get PDF
    Tetracycline accumulation in surface waters, due to its extensive use and ineffective removal by traditional remediation treatments, represents a major environmental problem, leading e.g. to increasedantibiotic resistance. Here, photocatalysis by TiO2, both as nanostructured powders and macroscopic immobilized systems, is proposed as an efficient procedure to totally degrade tetracycline to harmless compounds. Home-made TiO2 powders were studied to clarify the role of synthetic and process parameters (light pre-treatment, calcination temperature) and to shed light on the role of radical species in promoting the reaction (tests with radical scavengers). The control of phase composition and wetting features appears to be essential in producing photocatalysts able to completely mineralize tetracycline in a short time scale (6 h). The knowledge acquired on the powder system was preparatory to the development of low cost, mechanically robust and highly active TiO2 immobilized systems. Two different substrate geometries (laminas and pellets) were investigated to ease the photocatalyst removal from the treated effluent. Both immobilized systems proved efficient: in particular, the TiO2-coated pellets promoted tetracycline degradation and mineralization on a time scale that is very competitive when compared to similar literature immobilized systems

    Electrically controlled waveguide polariton laser

    Full text link
    Exciton-polaritons are mixed light-matter particles offering a versatile solid state platform to study many-body physical effects. In this work we demonstrate an electrically controlled polariton laser, in a compact, easy-to-fabricate and integrable configuration, based on a semiconductor waveguide. Interestingly, we show that polariton lasing can be achieved in a system without a global minimum in the polariton energy-momentum dispersion. The surface cavity modes for the laser emission are obtained by adding couples of specifically designed diffraction gratings on top of the planar waveguide, forming an in-plane Fabry-Perot cavity. It is thanks to the waveguide geometry, that we can apply a transverse electric field in order to finely tune the laser energy and quality factor of the cavity modes. Remarkably, we exploit the system sensitivity to the applied electric field to achieve an electrically controlled population of coherent polaritons. The precise control that can be reached with the manipulation of the grating properties and of the electric field provides strong advantages to this device in terms of miniaturization and integrability, two main features for the future development of coherent sources from polaritonic technologies.Comment: 11 pages, 5 figures. Supplementary: 6 pages, 7 figure

    Distribution characteristics of pandalid shrimps (Decapoda: Caridea: Pandalidae) along the Central Mediterranean Sea

    Get PDF
    The genus Plesionika is represented in the Mediterranean Sea by eight species, six of which,Plesionikaacanthonotus, P. antigai, P. edwardsii, P. gigliolii, P. heterocarpus and P. martia, are very common on muddy bottoms of the continental slope. During nine experimental trawl surveys a total of 29,038 individuals of these six pandalid species, was collected off the central western coasts of Italy (central Mediterranean) in order to study population structure and spatial distribution. P . antigaiinhabits the shelf break and upper slope; P. heterocarpus shows a wide bathymetric distribution, from the shelf-break to the upper slope; P. edwardsii and P. gigliolii occur in the upper slope. P. acanthonotus and P. martia occur in the deepest depths investigated. Segregation by size is revealed for the species that inhabit the same bottoms. The non-homogenous spatial distribution of Plesionikaspecies in the study area was probably related to the spatial differences in the magnitude of primary production in the area

    Mesoporous Titania Nanocrystals by Hydrothermal Template Growth

    Get PDF
    Mesoporous TiO(2) nanocrystals have been synthetized by a classical sol-gel route integrated by an hydrothermal growth step using monomeric (dodecylpyridinium chloride, DPC) or dimeric gemini-like (GS3) surfactants as template directing agents. Adsorption isotherms at the solid/liquid interface of the two surfactants have been obtained on aqueous dispersion of titania; the nature of the oxide/adsorbate interactions and the molecules orientation/coarea are discussed. The effects produced by the presence of the two surfactants on the different morphological (surface area, porosity, and shape) and structural (phase composition and aggregate size) features of the final TiO(2) samples, calcined at 600 degrees C, are discussed
    corecore