22 research outputs found

    The effect of major cations on the toxicity of cadmium to Folsomia candida in a sand-solution medium analyzed by biotic ligand modeling

    Get PDF
    The aim of this study was to assess the effect of major cations (Ca2+, Mg2+, Na+, K+, and H+) on cadmium toxicity to the springtail Folsomia candida. Survival of the animals was determined after seven days exposure to different cadmium concentrations in an inert sand-solution medium, in different experimental setups with modification of the cation concentrations. Among the cations tested, Ca2+ and Mg2+ had protective effects on the toxicity of cadmium to the springtails while Na+, K+, and H+ showed less competition with free cadmium ions for binding to the uptake sites of the collembolans. Toxicity predicted with a biotic ligand model agreed well with the observed values. Calculated conditional binding constants and the fraction of biotic ligands occupied by cadmium to show 50% effects were similar to values reported in the literature. The results emphasize the important role of solution chemistry in determining metal toxicity to soil invertebrates

    The effect of the earthworm Lumbricus rubellus on the bioavailability of cadmium and lead to the springtail Folsomia candida in metal-polluted field soils

    Get PDF
    The bioavailability of metals can be influenced not only by soil properties but also by other species living at polluted sites. However, in laboratory experiments, usually only one test species is used to estimate bioavailability. In this study, a two-species approach was applied to assess the impact of the earthworm Lumbricus rubellus on the bioavailability of cadmium and lead to the springtail Folsomia candida using natural soils from a gradient of metal pollution. Earthworms were kept in half of the soil replicates for 4 weeks. Subsequently, the uptake and elimination kinetics of cadmium and lead in F. candida exposed for 21 days to the soils was determined. Earthworm activity affected soil properties but did not significantly affect metal uptake rate constants in springtails. The slightly higher uptake due to the presence of earthworms, which was consistent in all tested soils and for both metals, suggests that further research is needed on the role of species interactions in affecting metal bioavailability in soil

    Avoidance tests with the oribatid mite Oppia nitens (Acari: Oribatida) in cadmium-spiked natural soils

    Get PDF
    Avoidance behavior can be a useful parameter for assessing the ability of organisms to escape from pollutants in their environment. For soil evaluation, a variety of invertebrates is used including the oribatid mite Oppia nitens. Here, we tested the avoidance behavior of O. nitens using a two-chamber test and an escape test with exposures to different cadmium concentrations of up to 800 mg kg−1 dry LUFA 2.2 soil for 2, 4, and 6 days, and up to 7 weeks. With the two-chamber method, the oribatid mites had the choice between clean and polluted soils, whereas they were allowed to escape from a box with polluted soil to clean containers without soil with the escape method. Avoidance of cadmium was observed after 2 days in both tests and the net response of the mites in the two-chamber test increased with increasing cadmium exposure concentrations. Mite responses varied through time, especially with the escape method; with the avoidance behavior becoming more variable and overall non-significant with longer test durations. This is the first study investigating the escape test simultaneously with long-term avoidance of cadmium by O. nitens. This mite species is a promising species for avoidance testing in soil ecotoxicology, but more experiments are needed to evaluate the factors that influence its responses in laboratory tests and the consequences for its distribution in contaminated ecosystems

    Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera)

    Get PDF
    The frequency of damaged Varroadestructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dorsal dimples, 32 honey bee (A. mellifera) colonies were selected from four Iranian provinces: Isfahan, Markazi, Qazvin, and Tehran. These colonies were part of the National Honey bee Breeding Program that resulted in province-specific races. In April, Varroa mites were collected from heavily infested colonies and used to infest the 32 experimental colonies. In August, 20 of these colonies were selected (five colonies from each province). Adult bees from these colonies were placed in cages and after introducing mites, damaged mites were collected from each cage every day. The average percentage of injured mites ranged from 0.6 to 3.0% in four provinces. The results did not show any statistical differences between the colonies within provinces for injuries to mites, but there were some differences among province-specific lines. Two kinds of injuries to the mites were observed: injuries to legs and pedipalps, and injuries to other parts of the body. There were also some regular dorsal dimples on dorsal idiosoma of the mites that were placed in categories separate from mites damaged by bees. This type of classification helps identifying damage to mites and comparing them with developmental origin symptoms, and may provide criteria for selecting bees tolerant or resistant to this mite

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Consumption Performance of Five Detritivore Species Feeding on Alnus glutinosa L. Leaf Litter in a Microcosm Experiment

    No full text
    The present study was performed to assess the feeding performance of five detritivore species in a microcosm design. The test animals were four millipede species, Telodeinopus aoutii (Demange), Epibolus pulchripes (Gerstäcker), Cylindroiulus caeruleocinctus (Wood), Glomeris hexasticha (Brandt), and one isopod species, Porcellio scaber (Latreille), all feeding on Alnus glutinosa L. leaf litter for five consecutive weeks. At the end of each one-week interval, litter consumption, animal fresh weight, and excrement production were measured. Then, the feeding activity parameters for each species were calculated. Between big-size animal species, higher leaf consumption rates of 12.3–30.9 mg dry weight day−1 individual−1 were calculated for T. aoutii compared to those of 3.72–8.25 mg dry weight day−1 individual−1 for E. pulchripes. However, there was no difference in the consumption rates among small-size animals ranging from 0.46 to 1.65 mg dry weight day−1 individual−1. Excrement production rates followed a similar trend, as the consumption rates and the animals’ body weight remained constant during the experiment. Time was an important factor influencing the feeding activity of the animals, especially for the big-size group. Overall, the average assimilation efficiency of these species varied from 13.7% to 53.3%. The results of the present work will be the first step for understanding the ecological needs of these decomposer species in soil ecosystems

    The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil

    No full text
    The aim of this study was to assess the effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial groups and their interactions on a simple plant community in a microcosm experiment. The experiment was performed with two grass species (Poa compressa, Festuca rubra) and two herb species (Centaurea jacea, Lotus corniculatus) which are characteristic of intermediate succession stages in post-mining sites. Three months before the start of the experiment, bacteria, saprophytic fungi, protists, and their combined treatments were inoculated into the soil. At the start of the experiment, half of the pots were inoculated with mycorrhiza. After 60 days, plants were harvested and shoot and root biomass and microbial respiration and biomass were assessed. Above- and belowground plant biomass was significantly lower in the treatments with mycorrhiza. The effect was significant for aboveground biomass of grasses, especially that of Poa compressa, and for grass/herb ratio but not for herbs. Microbial respiration was also lower with mycorrhiza. Among microbial community treatments, saprophytic fungi showed significant effects on plant growth. The results showed the importance of mycorrhizal fungi on plant biomass and its interaction with different plant species and microbial groups which would be useful when extrapolating these results to a natural environment

    The Effect of Microbial Diversity and Biomass on Microbial Respiration in Two Soils along the Soil Chronosequence

    No full text
    Microbial diversity plays an important role in the decomposition of soil organic matter. However, the pattern and drivers of the relationship between microbial diversity and decomposition remain unclear. In this study, we followed the decomposition of organic matter in soils where microbial diversity was experimentally manipulated. To produce a gradient of microbial diversity, we used soil samples at two sites of the same chronosequence after brown coal mining in Sokolov, Czech Republic. Soils were X-ray sterilized and inoculated by two densities of inoculum from both soils and planted with seeds of six local plant species. This created two soils each with four levels of microbial diversity characterized by next-generation sequencing. These eight soils were supplied, or not, by litter of the bushgrass Calamagrostis epigejos, and microbial respiration was measured to assess the rate of decomposition. A strong positive correlation was found between microbial diversity and decomposition of organic matter per gram of carbon in soil, which suggests that microbial diversity supports decomposition if the microbial community is limited by available carbon. In contrast, microbial respiration per gram of soil negatively correlated with bacterial diversity and positively with fungal biomass, suggesting that in the absence of a carbon limitation, decomposition rate is controlled by the amount of fungal biomass. Soils with the addition of grass litter showed a priming effect in the initial stage of decomposition compared to the samples without the addition of litter. Thus, the relationship between microbial diversity and the rate of decomposition may be complex and context dependent
    corecore