146 research outputs found

    Enhancing CFD-LES air pollution prediction accuracy using data assimilation

    Get PDF
    It is recognised worldwide that air pollution is the cause of premature deaths daily, thus necessitating the development of more reliable and accurate numerical tools. The present study implements a three dimensional Variational (3DVar) data assimilation (DA) approach to reduce the discrepancy between predicted pollution concentrations based on Computational Fluid Dynamics (CFD) with the ones measured in a wind tunnel experiment. The methodology is implemented on a wind tunnel test case which represents a localised neighbourhood environment. The improved accuracy of the CFD simulation using DA is discussed in terms of absolute error, mean squared error and scatter plots for the pollution concentration. It is shown that the difference between CFD results and wind tunnel data, computed by the mean squared error, can be reduced by up to three order of magnitudes when using DA. This reduction in error is preserved in the CFD results and its benefit can be seen through several time steps after re-running the CFD simulation. Subsequently an optimal sensors positioning is proposed. There is a trade-off between the accuracy and the number of sensors. It was found that the accuracy was improved when placing/considering the sensors which were near the pollution source or in regions where pollution concentrations were high. This demonstrated that only 14% of the wind tunnel data was needed, reducing the mean squared error by one order of magnitude

    IBtkα Activates the β‐Catenin‐Dependent Transcription of MYC through Ubiquitylation and Proteasomal Degradation of GSK3βin Cancerous B Cells

    Get PDF
    The IBTK gene encodes the IBtkα protein that is a substrate receptor of E3 ubiquitin ligase, Cullin 3. We have previously reported the pro‐tumorigenic activity of Ibtk in MYC‐dependent B‐ lymphomagenesis observed in Eμ‐myc transgenic mice. Here, we provide mechanistic evidence of the functional interplay between IBtkα and MYC. We show that IBtkα, albeit indirectly, activates the β‐catenin‐dependent transcription of the MYC gene. Of course, IBtkαassociates with GSK3β and promotes its ubiquitylation, which is associated with proteasomal degradation. This event increases the protein level of β‐catenin, a substrate of GSK3β, and results in the transcriptional activation of the MYC and CCND1 target genes of β‐catenin, which are involved in the control of cell division and apoptosis. In particular, we found that in Burkitt’s lymphoma cells, IBtkα silencing triggered the downregulation of both MYC mRNA and protein expression, as well as a strong decrease of cell survival, mainly through the induction of apoptotic events, as assessed by using flow cytometry‐based cell cycle and apoptosis analysis. Collectively, our results shed further light on the complex puzzle of IBtkα interactome and highlight IBtkα as a potential novel therapeutic target to be employed in the strategy for personalized therapy of B cell lymphoma

    Insights into Thymus Development and Viral Thymic Infections

    Get PDF
    T-cell development in the thymus is a complex and highly regulated process, involving a wide variety of cells and molecules which orchestrate thymocyte maturation into either CD4+ or CD8+ single-positive (SP) T cells. Here, we briefly review the process regulating T-cell differentiation, which includes the latest advances in this field. In particular, we highlight how, starting from a pool of hematopoietic stem cells in the bone marrow, the sequential action of transcriptional factors and cytokines dictates the proliferation, restriction of lineage potential, T-cell antigen receptors (TCR) gene rearrangements, and selection events on the T-cell progenitors, ultimately leading to the generation of mature T cells. Moreover, this review discusses paradigmatic examples of viral infections affecting the thymus that, by inducing functional changes within this lymphoid gland, consequently influence the behavior of peripheral mature T-lymphocytes

    AKT participates in endothelial dysfunction in hypertension.

    Get PDF
    In hypertension, reduced nitric oxide production and blunted endothelial vasorelaxation are observed. It was recently reported that AKT phosphorylates and activates endothelial nitric oxide synthase and that impaired kinase activity may be involved in endothelial dysfunction.To identify the physiological role of the kinase in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), we used adenoviral vectors to transfer the human AKT1 gene selectively to the common carotid endothelium. In vitro, endothelial vasorelaxations to acetylcholine, isoproterenol, and insulin were blunted in control carotids from SHR compared with WKY rats, and human AKT1 overexpression corrected these responses. Similarly, blood flow assessed in vivo by Doppler ultrasound was reduced in SHR compared with WKY carotids and normalized after AKT1 gene transfer. In primary cultured endothelial cells, we evaluated AKT phosphorylation, activity, and compartmentalization and observed a mislocalization of the kinase in SHR.We conclude that AKT participates in the settings of endothelial dysfunction in SHR rats by impaired membrane localization. Our data suggest that AKT is involved in endothelium dysfunction in hypertension

    The Anatomy of Asilisaurus kongwe, a Dinosauriform from the Lifua Member of the Manda Beds (~Middle Triassic) of Africa

    Get PDF
    The diagnosis of Dinosauria and interrelationships of the earliest dinosaurs relies on careful documentation of the anatomy of their closest relatives. These close relatives, or dinosaur “precursors,” are typically only documented by a handful of fossils from across Pangea and nearly all specimens are typically missing important regions (e.g., forelimbs, pelves, skulls) that appear to be important to help resolving the relationships of dinosaurs. Here, we fully describe the known skeletal elements of Asilisaurus kongwe, a dinosauriform from the Middle Triassic Manda Beds of the Ruhuhu Basin of Tanzania. The taxon is known from many disarticulated and partially articulated remains and, most importantly, from a spectacularly preserved associated skeleton of an individual containing much of the skull, pectoral and pelvic girdles, forelimb and hindlimb, and parts of the vertebral column including much of the tail. The unprecedented detail of the anatomy indicates that Asilisaurus kongwe had a unique skull that was short and had both a premaxillary and dentary edentulous margin, but retained a number of character states plesiomorphic for Archosauria, including a crocodylian-like ankle configuration and a rather short foot with well-developed metatarsals I and V. Additionally, character states present across the skeleton of Asilisaurus kongwe suggest it is more closely related to Silesaurus opolensis than to dinosaurs; thus suggesting high homoplasy and parallel trends within Silesauridae and within lineages of early dinosaurs. The anatomy of Asilisaurus kongwe and detailed description of early members of clades found outside Dinosauria are clearly needed to untangle the seemingly complex character evolution of the skeleton within avemetatarsalians.Fil: Nesbitt, Sterling J.. Virginia Polytechnic Institute; Estados UnidosFil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Ezcurra, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin

    Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution

    Oink: an Implementation and Evaluation of Modern Parity Game Solvers

    Full text link
    Parity games have important practical applications in formal verification and synthesis, especially to solve the model-checking problem of the modal mu-calculus. They are also interesting from the theory perspective, as they are widely believed to admit a polynomial solution, but so far no such algorithm is known. In recent years, a number of new algorithms and improvements to existing algorithms have been proposed. We implement a new and easy to extend tool Oink, which is a high-performance implementation of modern parity game algorithms. We further present a comprehensive empirical evaluation of modern parity game algorithms and solvers, both on real world benchmarks and randomly generated games. Our experiments show that our new tool Oink outperforms the current state-of-the-art.Comment: Accepted at TACAS 201

    The higher-level phylogeny of Archosauria (Tetrapoda:Diapsida)

    Get PDF
    Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archosaur anatomy enable the compilation of a new dataset, which assimilates and standardizes character data pertinent to higher-level archosaur phylogeny, and is scored across the largest group of taxa yet analysed. This dataset includes 47 new characters (25% of total) and eight taxa that have yet to be included in an analysis, and total taxonomic sampling is more than twice that of any previous study. This analysis produces a well-resolved phylogeny, which recovers mostly traditional relationships within Avemetatarsalia, places Phytosauria as a basal crurotarsan clade, finds a close relationship between Aetosauria and Crocodylomorpha, and recovers a monophyletic Rauisuchia comprised of two major subclades. Support values are low, suggesting rampant homoplasy and missing data within Archosauria, but the phylogeny is highly congruent with stratigraphy. Comparison with alternative analyses identifies numerous scoring differences, but indicates that character sampling is the main source of incongruence. The phylogeny implies major missing lineages in the Early Triassic and may support a Carnian-Norian extinction event.Marshall Scholarship for study in the United KingdomJurassic FoundationUniversity of BristolPaleontological Societ
    corecore