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1. Motivation

Almost 400 researchers from across the world joined the first ECMWF–ESA Workshop 

on Machine Learning for Earth System Observation and Prediction (ESOP), which was 

hosted by ECMWF and held online from 5 to 8 October 2020. 

The workshop brought together experts from a variety of backgrounds to survey the status 

of the uptake of Machine and Deep learning (ML/DL) methodologies in the ESOP 

communities, evaluate their expected impacts and build a consensus view on the best way to 

realize the untapped potential of ML/DL in Earth System science.  

Machine and Deep Learning techniques have made possible remarkable advances in an 

ever-growing number of disparate application areas, e.g. natural language processing, 

computer vision, autonomous vehicles, healthcare, finance and many others. These advances 

have been driven by the huge increase in available data and computing power as well as the 

emergence of more effective and efficient algorithms to extract relevant information from 

these data pools. Earth System Sciences have benefited greatly from well-known laws 

governing system behavior, such as the Navier-Stokes equations for fluid flow or the laws 

governing radiative transfer, and the success of the field has in many ways been based on its 

ability to translate these physical/dynamical laws into accurate numerical models. However, 

the field is expanding into areas that, due to the scales involved, are not easy to model from 

fundamental principles - this includes areas such as cloud and precipitation physics and 

biological processes; further there are areas where system parameters are heterogeneous on 

fine scales and hence are not fully-known - e.g. the Earth’s surface, its vegetation, soil and 

hydrological properties. Earth System Sciences have arguably been latecomers to the ML/DL 

party, but interest is rapidly growing, as borne out by the increasing number of publications 

in the field which make use of ML/DL techniques and confirmed by the large number of 
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participants to this workshop and to other similar events.  Innovative applications of ML/DL 

tools are becoming increasingly common and the workshop was structured to reflect their 

increasing relevance for all aspects of the Numerical Weather Prediction (NWP) and Climate 

Prediction workflow (Fig. 1). The following report focuses on the main discussion points and 

outcomes in the areas covered by the Workshop.  

2. The Workshop

The Workshop started with two introductory talks by David Gagne (NCAR) and Alan Geer 

(ECMWF) who provided high-level overviews of the current status of ML/DL in the Earth 

sciences and their connections to more traditional methodologies. David Gagne showed 

examples of how ML/DL models can be used as computationally efficient emulators of more 

complex models that would otherwise be unaffordable in standard weather/climate 

simulations. Alan Geer highlighted the similarities between ML/DL and data assimilation 

(DA), which underpins the creation of initial conditions for weather forecasting, geophysical 

retrievals from satellites, and many other applications in the Earth sciences. Both ML/DL and 

DA can be seen as inverse methods based on Bayes’ theorem, with a clear potential for cross-

fertilisation, which was one of the key aspects explored in the workshop (see section b). The  

Earth sciences have for many years been developing DA to infer not just geophysical states, 

but also uncertain model parameters - this is known as parameter estimation. ML/DL shows 

ways to extend this towards full inference of models, although the many practical difficulties 

of parameter estimation would affect ML/DL too. Future developments in the use of 

observations that might benefit from ML/DL were also covered, including internet of things 

(IoT) observations such as mobile phone pressures, and the growing data volumes from space 

platforms, as sensors and satellites can increasingly be miniaturized and deployed in ever 

greater numbers 
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The main body of Workshop was structured in four sessions with talks covering the 

building blocks of the NWP/Climate prediction workflow (observations, data assimilation, 

models, ensembles and product development) and a Poster Session where presenters and 

participants could meet in digital rooms to discuss their research. Oral presentations 

recordings and slides, and poster presentations are available on the Workshop website 

(https://events.ecmwf.int/event/172/). 

a. Machine Learning for Earth System Observation

The first session focused on the potential of ML/DL to improve the exploitation of 

available and future observations of the Earth system. 

In areas of Earth observation relying on image processing, ML/DL technologies are well 

established as existing network designs and strategies from the wider community can be 

applied with often minimal adaptations. Several talks outlined the importance of ML/DL in 

providing insights from an increasingly vast stream of data from satellites. Pierre-Philippe 

Mathieu addressed “the rise of AI for Earth Observation (EO)” by presenting examples such 

as physics-aware AI, i.e. integration of physical domain knowledge in the statistical 

formulation of  ML/DL models, or trustworthy and explainable AI which goes beyond the 

“black-box” vision often associated with these models. Begüm Demir explained how data 

mining techniques allow for leveraging the large archives of EO data through image retrieval 

with query by example or automatic description (“captioning”) of scenes and landscapes seen 

from above (Hoxha et al., 2020).   

Earth system observations can be difficult to use – they are typically sparse, affected by 

uncertainties and made using indirect methods, often with substantial nonlinearities. Beyond 

image processing, e.g. when applications require geophysical retrievals or aim to produce 

initial conditions for NWP forecasts, these issues have driven the development of inverse 
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methods like DA. ML may need to adapt substantially to deal with sparse, uncertain and 

indirect earth system observations, taking inspiration from DA. However, machine learning 

still has numerous potential applications in this area. For example, deep learning tools could 

emulate satellite observation operators and retrieval methods; ML/DL could also be used to 

learn these components where physical models are not yet available. Examples include the 

retrievals from the Soil Moisture Ocean Salinity (SMOS) satellite that are assimilated 

operationally at ECMWF, as outlined in Peter Weston’s talk. Here, in a method akin to 

transfer learning, an existing Neural Network  has been re-trained with the observations and 

the ECMWF model soil moisture, reducing the possibility of assimilating biased 

observations. Imme Ebert-Uphoff and David J. Gagne focused on the need for interpretation 

of neural network prediction in the meteorological domain, or “making the black box more 

transparent”. This relies on understanding the physical implications of machine learning on 

the one hand (McGovern et al., 2019), and understanding the neural network behaviour and 

the correlations found between the data and the output on the other hand (Ebert-Uphoff and 

Hilburn, 2020).  There are also applications in quality control, data monitoring and 

observation bias correction; these featured heavily in the discussions of the observations 

working group showing that research in all these areas is very active.   

b. Machine Learning for Data Assimilation

Data assimilation and machine learning (ML) have much in common: they both 

ultimately try to describe and model the system of interest by using data. Data assimilation 

focuses on time-evolving systems, it has been primarily used to estimate the system’s state 

and its uncertainty and is known for its ability to combine effectively available data with a 

given, inevitably imperfect and incomplete, model. Machine learning is generally purely 

data-driven, it does not rely on any prior knowledge of the underlying process and is not 
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exclusively applied to time-evolving systems. Can DA and ML be mutually helpful? What 

are their respective strengths and weaknesses?  

These were some of the general questions that the talks and posters tried to give answers 

to, and which were then further discussed in the dedicated Working Group. Three main 

research areas exploring the connections between DA and ML were identified: (i) Integrate 

ML and DA, (ii) Combine ML and DA, and, (iii) Unify ML and DA.  

The first area refers to the pragmatic approach of exploiting ML as an alternative way to 

provide some key components of the DA system and/or vice-versa. In this context one 

research direction is to preserve the DA system as much as possible but to incorporate ML 

tools to improve or make some critical components of the DA system faster/more efficient. 

Examples include using different ML architectures to improve/estimate the observation 

operator or to provide a parameterization of the background errors operator, and even to try to 

improve the solver itself by, e.g. devising data-driven tangent linear and adjoint models, or to 

“learn” the Kalman gain in an ensemble Kalman filter framework. Another development 

direction is to employ DA in the training process of a ML model to improve the accuracy of 

the resulting data-driven models. The use of DA in the training process of Generative 

Adversarial Networks (GANs) to improve the accuracy of a resulting surrogate model is an 

example. The talks from Rossella Arcucci, Takemasa Miyoshi, Ronan Fablet, and the posters 

of Shigenori Otsuka and Andrea Storto provided examples of these developments. 

The second area describes attempts to combine DA and ML in a hybrid configuration. 

While DA provides efficient tools to handle noisy and sparse observations in conjunction 

with a (usually imperfect) model, ML does not need a model but it requires the data to be 

highly accurate as well as spatially and temporally sufficient to describe all the relevant 

degrees of freedom of the system. Alberto Carrassi proposed combining DA and ML in a 
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hybrid, iterative framework where DA is used to assimilate sparse and noisy data to obtain 

the mean and covariance of the analysis pdf. These estimates of the state are then fed to the 

ML step where a model of the dynamical system is retrieved. The same approach can also be 

used to infer model parameterizations or to estimate the model error as discussed in the 

posters of Alban Farchi and Arata Amemiya and in the talk by Massimo Bonavita. Another 

venue of cross fertilization between DA and ML was presented by Manuel Pulido where 

expectation maximization algorithms common in ML were used to estimate hyper-

parameters, e.g. the error covariances, needed in DA, and by Pieter Houtekamer who showed  

how to embed a genetic ML algorithm in an operational ensemble data assimilation system to 

obtain improved estimates of the prognostic model parameters.      

The third area includes contributions that have identified methodological analogies between 

DA and ML, or that have proposed unifying the two families of methods under a common 

theoretical formalism. For instance, Massimo Bonavita pointed out that, from a 

methodological perspective, ML/DL can be viewed as a particularization of DA to the task of 

estimating the underlying model dynamics and that some existing DA methods, e.g. weak-

constraint 4D-Var, already perform a form of online ML of the model errors. The  

contribution from Marc Bocquet discussed combining DA and ML under a more 

comprehensive and general Bayesian formalism. Peter Jan van Leeuwen’s talk showed how 

to embed Deep Learning in a Bayesian framework so as to equip it with the ability to provide 

uncertainty estimates of the learned model. Anthony Fillion’s poster presentation proposed a 

fully data driven DL architecture based on generalizing recurrent Elman networks. 

The discussions in the Working Group dedicated to these topics highlighted several concrete 

challenges. These include data format compatibility, ML for model reduction (including 
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preconditioning), and the implementation/incorporation of ML approaches within existing  

DA systems.   

Available data of the Earth systems are sparse, noisy and/or not fully representative. It was  

discussed how to equip DA with ML-derived observation operators. A possible avenue is to  

improve, or to fully estimate, ML-based observation operators, e.g. using AutoEncoders  

(AE), thanks to their capability to represent nonlinearities.  AEs are also very promising for  

dimensionality reduction, as has been already shown in various applications, also compared  

to more traditional linear approaches such as Truncated Singular Value Decomposition  

(TSVD), Principal Component Analysis (PCAs), etc.. Nevertheless, AEs are not yet very  

efficient for problems with the typically very large dimensions encountered in DA  

applications in the geosciences and may require the prior identification of a reduced space  

with physical interpretability.   

Another important concern is the ensemble construction, relevant for both ensemble-based  

DA and ensemble prediction systems. Here the main idea is to use AEs to shift the ensemble  

generation process to a much smaller subspace which is able to capture the main modes of  

variability of the geophysical system.   

Finally, the discussion centred on exploring the potential of “online learning” such that the  

result of the training process can be continuously updated as new data become available  

without the need for offline  retraining of the whole ML-model.   

c. Machine Learning for Weather and Climate Models  

This section of the Workshop was devoted to understanding what ML/DL can do to  

improve current geophysical models, with a specific focus on weather and climate models. A  

promising application is in the emulation of specific model components, such as the  

radiation, gravity wave-drag and boundary layer turbulence parameterization schemes, in  
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order to exploit the computational efficiency of ML/DL technologies and obtain speed-up and  

energy efficiency gains. Examples of this type of application were provided in the  

contributions from Leyi Wang, Peter Dueben, Peter Ukkonen and Matthew Chantry. An  

extension of this idea is to train a NN to emulate the full set of physical parameterizations, as  

shown e.g. by Alexei Belochitski in an application aimed at reproducing the physics  

parameterizations of the NCEP GFS atmospheric model, and by Christiane Jablonowski in a  

hierarchy of GCMs of increasing realism and complexity.  

The logical next step is to use NN to emulate the full model. This idea is enticing but it  

comes with its own caveats, as ML models are statistical models and they are exposed to the  

curse of dimensionality (see, for example, the recent discussion in Bonavita and Laloyaux,  

2020). For this reason, applications have mainly focussed on reduced order models (Yang  

Liu, Maha Mdini), or at forecasting a small set of weather parameters at low resolution  

(Ashesh Chattopadhyay, Dale Durran, Jonathan Weyn) for medium-range to seasonal  

forecasting ranges. Another, related idea, is to use ML to forecast weather parameters where  

standard NWP products show more room for improvement. A case in point is the forecasting  

of precipitation, which a number of contributors showed it can be improved with the use of  

NN models (Shigenori Otsuka, Duncan Watson-Parris, Mingming Zhu, Carlos Gonzalez, Jie  

Xiahou).  

A hot topic in the application of ML/DL in NWP and Climate Prediction is the use of  

physics-informed, interpretable and trustworthy ML methods. Imme Ebert-Uphoff and Vipin  

Kumar explained that such methods would allow our understanding of the Earth system to be  

leveraged to develop customized ML tools that fit the needs of the community, instead of  

using black/grey-box ML tools whose results are difficult to interpret and for which it will be  

difficult to convince domain scientists about their trustworthiness. .  
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d. Machine Learning for Product Development and ensemble processing

ML/DL can be used for extracting and enhancing  information from the NWP/Climate 

prediction workflow through the development of tailored, custom-oriented products. Laure 

Raynaud presented the potential of Convolutional Neural Networks (CNN) to perform the 

automatic detection of weather “objects” such as atmospheric  fronts and tropical cyclones in 

NWP model outputs.  Ryan Lagerquist showed that CNN can also be used for the prediction 

of next-hour tornado probability, and different diagnostics and tools for ML interpretation 

were presented.  Sue Ellen Haupt discussed the use of ML for the production of weather 

products tailored for the renewable energy industry. In the contribution of Claire Monteleoni, 

ML/DL was shown to be a promising way to perform the statistical downscaling (called 

Super Resolution in the Computer Vision community) of low-resolution temperature and 

precipitation forecasts. 

The post-processing of ensemble forecasts is another promising and well-advanced 

application area which was widely covered in both the oral and the poster sessions (e.g., 

contributions from Nikoli Dryden, Daniele Nerini, Sebastian Lerch). ML/DL was shown to 

be able to provide a flexible, data-driven modelling of nonlinear relations between predictors 

and the distribution parameters of the predictands, with results already competitive with state-

of-the-art approaches.   

Other potential DL-based applications have been mentioned, such as the use of Natural 

Language Processing (NLP) for the automatic generation of weather bulletins or chatbot to 

interact with end-users.  

The current uptake of ML/DL methodology for post-processing is still limited in 

operational settings. In the short term, we would expect ML/DL to have the largest impact 

where nonlinear methods are needed. Post processing of forecasts (in the sense of calibration) 
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is likely to be the first application to benefit from these methodologies and reach operational  

maturity (we note that benchmarks already exist in this domain). In the longer term,  

ML/DLmethods may help in the design of Ensemble Prediction System (EPS) where a  

tradeoff is required between increased horizontal resolution and increased ensemble size.   

Several key challenges have also been identified. In particular, standard ML frameworks  

need to be adapted to the specific needs of the community. For instance, a concern was raised  

about the blurry effect of CNN-based downscaling which should be avoided for an  

operational application. The specification of a dedicated loss function might be required to  

solve this problem. Beyond the lack of labeled datasets for pattern detection, the need for  

homogeneous data over a long forecast period is important. As post-processing ML/DL  

algorithms rely on weather model outputs, the necessity to retrain the ML/DL model  

whenever the weather models are updated may pose a potential issue. Similarly to the other  

application areas, the need for interpretability and explainability of ML/DL-based solutions in  

post-processing applications was deemed a crucial factor for their wider adoption.  

3. Key outcomes and next steps  

The oral and poster presentations sparked interest and lively discussions among the  

participants during the four working groups covering the main areas of the application of  

ML/DL to NWP and climate. The main findings of the working groups were discussed in the  

final plenary session and are available on the Workshop website. The overarching conclusion  

was that the field is in rapid development and there is huge interest in the ESOP  

communities. It was also felt that progress will be fast as domain scientists increase  

collaboration with ML/DL specialists and at the same time ML/DL expertise becomes more  

widespread. This second aspect is particularly important. The evolution of ML/DL has been  
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historically characterised by an evolution from general-purpose Dense Neural Networks to 

more tailored Neural Networks architectures which exploit prior knowledge about the 

problem at hand to build more effective and efficient ML models (Goodfellow et al., 2016). 

In a similar way ML/DL  technologies need to be adapted and tailored to the specific ESOP 

applications and this is where in-depth domain knowledge from ESOP scientists is deemed to 

be crucial for the success of the ML/DL application.    

To check on the pace of progress and further strengthen the community effort, ECMWF and 

ESA have provisionally scheduled a second, follow-on workshop for Q4 2021. Details will 

be announced in due course. 
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FIGURES 

Figure 1: Examples of possible Machine Learning applications in the various components of 

a standard NWP workflow. 
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