23 research outputs found

    The Extratropical Transition of Tropical Cyclones. Part I: Cyclonic Evolution and Direct Impacts

    Get PDF
    Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication

    AMAP 2017. Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region

    Get PDF

    Gender differentiated preferences for a community-based conservation initiative

    Get PDF
    Community-based conservation (CBC) aims to benefit local people as well as to achieve conservation goals, but has been criticised for taking a simplistic view of "community" and failing to recognise differences in the preferences and motivations of community members. We explore this heterogeneity in the context of Kenya's conservancies, focussing on the livelihood preferences of men and women living adjacent to the Maasai Mara National Reserve. Using a discrete choice experiment we quantify the preferences of local community members for key components of their livelihoods and conservancy design, differentiating between men and women and existing conservancy members and non-members. While Maasai preference for pastoralism remains strong, non-livestock-based livelihood activities are also highly valued and there was substantial differentiation in preferences between individuals. Involvement with conservancies was generally perceived to be positive, but only if households were able to retain some land for other purposes. Women placed greater value on conservancy membership, but substantially less value on wage income, while existing conservancy members valued both conservancy membership and livestock more highly than did non-members. Our findings suggest that conservancies can make a positive contribution to livelihoods, but care must be taken to ensure that they do not unintentionally disadvantage any groups. We argue that conservation should pay greater attention to individuallevel differences in preferences when designing interventions in order to achieve fairer and more sustainable outcomes for members of local communities

    Cumulative Burden of Colorectal Cancer-Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer.

    Get PDF
    BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC. METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants. RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 × 10-5). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings. CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition

    No full text
    Recurving tropical cyclones (TCs) undergoing extratropical transition (ET) may substantially modify the large-scale midlatitude flow pattern. This study highlights the role of diabatic outflow in midlatitude flow amplification within the context of a review of the physical and dynamical processes involved in ET. Composite fields of 12 western North Pacific ET cases are used as initial and boundary conditions for high-resolution numerical simulations of the North Pacific–North American sector with and without the TC present. It is demonstrated that a three-stage sequence of diabatic outflow associated with different weather systems is involved in triggering a highly amplified midlatitude flow pattern: 1) preconditioning by a predecessor rain event (PRE), 2) TC–extratropical flow interaction, and 3) downstream flow amplification by a downstream warm conveyor belt (WCB). An ensemble of perturbed simulations demonstrates the robustness of these stages. Beyond earlier studies investigating PREs, recurving TCs, and WCBs individually, here the fact that each impacts the midlatitude flow through a similar sequence of processes surrounding ET is highlighted. Latent heat release in rapidly ascending air leads to a net transport of low-PV air into the upper troposphere. Negative PV advection by the diabatically driven outflow initiates ridge building, accelerates and anchors a midlatitude jet streak, and overall amplifies the upper-level Rossby wave pattern. However, the three weather systems markedly differ in terms of the character of diabatic heating and associated outflow height, with the TC outflow reaching highest and the downstream WCB outflow producing the strongest negative PV anomaly.ISSN:1520-0493ISSN:0027-064

    The impacts on extended-range predictability of midlatitude weather patterns due to recurving tropical cyclones

    Get PDF
    Presented at the World Weather Open Conference, August 2014Office of Naval Research, Marine Meteorolog

    A Composite Perspective of the Extratropical Flow Response to Recurving Western North Pacific Tropical Cyclones

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1175/MWR-D-14-00270.1This study investigates the composite extratropical flow response to recurving western North Pacific tropical cyclones (WNP TCs), and the dependence of this response on the strength of the TC–extratropical flow interaction as defined by the negative potential vorticity advection (PV) by the irrotational wind associated with the TC. The 2.58 NCEP–NCARreanalysis is used to construct composite analyses of all 1979–2009 recurving WNP TCs and of subsets that undergo strong and weak TC–extratropical flow interactions. Findings indicate that recurving WNP TCs are associated with the amplification of a preexisting Rossby wave train (RWT) that disperses downstream and modifies the large-scale flow pattern over North America. ThisRWT affects approximately 2408 of longitude and persists for approximately 10 days. Recurving TCs associated with strong TC–extratropical flow interactions are associated with a stronger extratropical flow response than those associated with weak TC–extratropical flow interactions. Compared with weak interactions, strong interactions feature a more distinct upstreamtrough, stronger and broader divergent outflow associated with stronger midlevel frontogenesis and forcing for ascent over and northeast of the TC, and stronger upper-level PV frontogenesis that promotes more pronounced jet streak intensification. During strong interactions, divergent outflow helps anchor and amplify a downstream ridge, thereby amplifying a preexisting RWT from Asia that disperses downstream to North America. In contrast, during weak interactions, divergent outflow weakly amplifies a downstream ridge, such that a RWT briefly amplifies in situ before dissipating over the western-central North Pacific.This research was funded by NSF Grants AGS- 1355960 and AGS-0935830, as well as NOAA Grant NA09OAR4310192. A portion of this research was completed while the first author held a National Research Council Research Associateship Award at the Naval Postgraduate School, and during the first author’s threemonth visit with coauthor Chris Davis, which was supported by the NCAR Advanced Study ProgramGraduate Student Visitor Program

    Relationships between Large-Scale Regime Transitions and Major Cool-Season Precipitation Events in the Northeastern United States

    No full text
    This observational study investigates statistical and synoptic–dynamic relationships between regime transitions, defined as a North Atlantic Oscillation (NAO) or Pacific–North American pattern (PNA) index change from at least a 1 standard deviation anomaly to at least a 1 standard deviation anomaly of opposite sign within 7 days, and cool-season (November–April) northeastern U.S. (NE) precipitation. A statistical analysis is performed of daily cool-season NE precipitation during all NAO and PNA transitions for 1948–2003, and a composite analysis and case study of a major cool-season NE precipitation event occurring during a positive-to-negative NAO transition are conducted. Datasets used are the 0.25° NCEP Unified Precipitation Dataset, the 2.5° NCEP–NCAR reanalysis, and the 1.125° 40-yr ECMWF Re-Analysis (ERA-40). Results of the statistical analysis suggest that cool-season NE precipitation tends to be enhanced during positive-to-negative NAO and negative-to-positive PNA transitions, and suppressed during negative-to-positive NAO and positive-to-negative PNA transitions. Of the four types of regime transitions, only the positive-to-negative NAO transition is associated with substantially more frequent major cool-season NE precipitation events compared to climatology. Results of the composite analysis and case study indicate that a surface cyclone and cyclonic wave breaking associated with the major NE precipitation event can help produce a high-latitude blocking pattern over the North Atlantic characteristic of a negative NAO pattern via thermal advection, potential vorticity transport, and diabatic processes

    An Analysis of Multiple Predecessor Rain Events ahead of Tropical Cyclones Ike and Lowell: 10–15 September 2008

    Get PDF
    An analysis of three predecessor rain events (PREs) that occurred ahead of North Atlantic tropical cyclone (TC) Ike and east Pacific TC Lowell during 10–15 September 2008 is presented. The three PREs produced all-time daily record rainfall at many locations, including Lubbock, Texas (189.5 mm); Wichita, Kansas (262 mm); and Chicago–O’Hare, Illinois (169 mm), on 11–13 September, respectively. PRE 1 organized over Texas on 10 September with moisture from a stalled frontal boundary and the Bay of Campeche, and matured with moisture from TC Lowell. PRE 2 organized over the Texas Panhandle on 11 September with moisture from the Bay of Campeche, and developed and matured over Kansas and Missouri with moisture from TC Lowell. PRE 3 developed over Texas on 11 September, merged with and absorbed PRE 2 over Kansas and Missouri, and matured as it ingested moisture fromTC Ike. All three PREs matured in the equatorward entrance region of an intensifying subtropical jet stream (STJ). Heavy rainfall with the three PREs occurred along a plume of moist air characterized by high precipitable water values that extended poleward over the central United States near the juxtaposition of the nose of a low-level jet, a region of lower-tropospheric forcing for ascent along a surface baroclinic zone, and the STJ equatorward entrance region. The cumulative upscale effect of persistent deep convection from the three PREs enhanced and ‘‘locked in’’ a favorable upper-tropospheric flow pattern conducive to ridge development over the Ohio Valley and STJ intensification over the central U.S. and Great Lakes region
    corecore